
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Towards the Automatic Replication of Gameplays to Support
Game Debugging

Anonymous Author(s)

ABSTRACT
The video game industry has experienced a continuous growth in
the last decades. In such a competitive market, it is fundamental
to ensure a great gaming experience to the player avoiding, for
example, bugs. However, video game testing is an extremely chal-
lenging activity, especially considering the extensive number of
gaming scenarios that modern video games support (e.g., 3D worlds
to explore). Thus, more often than not, numerous bugs are discov-
ered only once the game is released and played by millions of users.
For this reason, recent work in the literature suggested to exploit
gameplay videos to support developers in identifying possible bugs
missed during testing: given the large amount of gameplays posted
every day on streaming platforms (> 2M hours), these gameplays
are likely to document failures experienced by the player. Empirical
evidence show the ability of these techniques to identify parts of
the gameplay in which the failure was experienced. However, it
could still be difficult for game developers to reproduce the bug.
In this paper, we propose the idea of developing a technique able
to automate this process, providing the game developer with all
actions performed by the player to reach the faulty state shown in
the gameplay. We present a simple approach which leverages the
on-screen controls overlay available in some gameplay videos. We
show that such an approach can replicate 47.2% of gameplays in
our preliminary study run on a racing game. We discuss the strong
limitations of this first attempt, listing directions for future work
we plan to pursue in order to overcome them.

KEYWORDS
Gameplay Video Reproduction, Video Games Testing

ACM Reference Format:
Anonymous Author(s). 2024. Towards the Automatic Replication of Game-
plays to Support Game Debugging. In Companion Proceedings of the 32nd
ACM Symposium on the Foundations of Software Engineering (FSE ’24), July
15–19, 2024, Porto de Galinhas, Brazil. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Video games have emerged as a dominant force in contemporary
society, exerting profound influences on social interactions, cul-
tural paradigms, and economic landscapes. As of 2022, the market
revenue of the game industry surpassed 200 billion USDs, with a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

forecast of 250 billion USDs by 2025 [13, 29, 31]. For being success-
ful in such a market it is not enough to only deliver games ensuring
high engagement for the player: Games must exhibit all properties
typical of high-quality software, such as good performance and
reliability with as few bugs as possible.

Video game testing poses well-known challenges related to con-
stant changes in requirements and design and the need for having
an intelligent interaction with the game to extensively exercise
its functionalities. This is the main reason why test automation
techniques are rarely applied by game developers [24, 28], leading
game testing to mostly being a manual process. For example, one
of the games being subject of the study by Zheng et al. [38] was
manually tested by 30 players.

For these reasons, the research community is actively working on
proposing techniques supporting game developers in testing activi-
ties (see e.g., [9–11, 16, 19, 30, 32]). Among those, techniques have
recently proposed to identify bugs reported by players in gameplays
posted on online platforms such as YouTube1 and Twitch2 [14, 21].
Indeed, millions of hours of gameplay are posted on these platforms
daily [12] and, as for any other player, the streamers may run into
bugs, which are thus documented in these videos. This makes the
gameplay videos a relevant source to mine for identifying and re-
porting failures to the developers. While these approaches [14, 21]
are able to identify parts of the gameplay in which a bug/glitch is
documented, there is still an open problem to face: How to replicate
the sequence of actions that led the game in the failing state. In
other words, how can the game developer reproduce the bug?

In this paper, we propose the idea of developing a technique that,
given as input a gameplay video and a set of possible actions that the
game supports (e.g., the game’s supported keyboard keys), produces
as output the sequence of actions which reproduce the portion of
gameplay given as input. The main assumption is that gameplay
videos show on screen the game actions. This would empower
developer to reproduce bugs identified in gameplay videos by state-
of-the-art techniques [14, 21].

In the literature, Intharah et al. [18] introduce DeepLogger in
order to reproduce issues through the anlysis of gameplay videos.
However, DeepLogger presents some limitations, for this reason
we introduced RePlay to overcome these constraints. We started
investigating this problem in the simplest scenario in which the
executed actions are shown on screen and for which the main task
is to export such controls from publicly available gameplay videos.
Also, we developed a technique tailored for one specific game, just
as a proof of concept of the problem we want to address in the long
run. Our approach uses machine learning models to discriminate
between frames showing/not showing the game actions overlayed.
The ones not showing them are discarded as non-gaming frames
(e.g., an advertisement shown on screen) while the others are fur-
ther analyzed to extract the executed actions. The sequence of

1 https://www.youtube.com/ 2 https://www.twitch.tv/

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

executed actions identified in consecutive frames composing the
gameplay can be used to replicate that specific gameplay. While we
are able to correctly identify ∼80% of the performed actions, ∼20%
of errors leads the agent to successfully replicate only ∼50% of the
40 gameplays on which we tested it. Our approach can be applied
to different video games, although the complexity of implementing
the approach will increase with the number of possible inputs the
game supports.

Our preliminary work shows that even a simple approach like
the one we propose can replicate some gameplay videos (for a
specific game). We expect more tailored techniques to effectively
address the problem with higher precision and generalizability
across games and perhaps make the approach independent from
the control overlay in the footage, at the cost of increased demand
for computing power.

2 RELATEDWORK
In recent years, there has been growing interest in the use of video
analysis for supporting Software Engineering tasks [4, 5, 26, 36].
Ponzanelli et al. [26] introduce CodeTube, a Web-based recom-
mender system that analyzes the contents of video tutorials and is
able to provide, given a query, cohesive and self-contained video
fragments, along with related Stack Overflow discussions. White
et al. [36] show how video analysis can be used to increase the repli-
cability of bugs experienced in Android apps. The authors present
an approach for automating the process of reproducing a bug. Pre-
vious work presents techniques aimed at identifying issues in video
games [17, 22, 23]. Iftikhar et al. [17] propose a model-based testing
approach for automated black box functional testing of platform
games. The authors define a detailed modeling methodology to
support automated system-level game testing and guidelines for
modeling the platform games for testing using our proposed game
test modeling profile. As a more general approach, Paduraru et al.
[23] introduced a similar tool named RiverGame, used to perform
game testing based on artificial intelligence. This tool lets the user
automatically test their products from different points of view: the
rendered output, the sound played by the game, the animation and
movement of the entities, the performance, and various statistical
analyses. Mnih et al. [22] used gameplay videos to train an AI agent
to play Atari games. In this case, the agent was trained by watching
gameplay videos and then could play the game by itself.

Some recent studies [2, 32, 37, 39] used Deep Reinforcement
Learning to support developers in finding issues in video games
(e.g., performance-related). Pfau et al. [25] introduced a framework
for autonomous playing of games, that also performs testing and
bug reporting named ’’ICARUS’’. Tufano et al. [32] introduced
RELINE based on Reinforcement Learning, defining a methodology
to train an agent to play the game as a human while also trying to
identify areas of the game resulting in a drop in FPS.

In some cases, however, such agents might struggle in finding
issues that, instead, humans happen to experience while playing
the game. For this reason, recent studies [14, 20, 21] focused on the
automatic identification of bugs through the analysis of gameplay
videos from popular video and streaming platforms (e.g., Twitch and
Youtube). Lin et al. [21] defined a technique to automatically iden-
tify gameplay videos that report bugs through metadata analysis.

Their approach, however, is not able to pinpoint the specific parts of
the video in which the bug is reported. This makes it unsuitable as a
reporting tool for game developers. Guglielmi et al. [14] introduced
GELID, a novel approach for automatically extracting relevant infor-
mation from gameplay video segments in which streamers reported
issues through subtitle and image analysis. Given as input a set of
gameplay videos from the same video game, such an approach clus-
ters together segments of the different gameplay videos reporting
similar issues (e.g., a specific bug occurred to many players).

To the best of our knowledge, the only approach in the literature
to reproduce issues highlighted in gameplay videos is DeepLogger
[18]. Given a gameplay video, such an approach relies on a CNN to
extract user inputs. DeepLogger takes into account discrete inputs
(i.e., keys pressed or not pressed) and leaves the extraction of con-
tinuous inputs (e.g., joysticks or mouse) as an open problem. Thus,
this network can only predict user input logs for a game where
training data is available. Our approach, instead, considers both
discrete and continuous inputs. This comes at the cost of relying on
input overlays, which are available only on a subset of gameplay
videos.

3 REPLAY
We present RePlay, an approach to extract the sequence of actions
performed by a player to replicate a given gameplay. The main steps
performed by RePlay are: (i) overlay detection, to identify the game
controls shown on screen, if any; (ii) the extraction of the actions
performed by the player; and (iii) the game reproduction. Some
parts of our implementation, meant to be a proof-of-concept, are
tailored for a specific video game, namely Trackmania, a popular
racing game series developed by Nadeo3 and published by Ubisoft4.
We chose Trackmania due to the limited number of controls to be
identified and consequent player actions to be predicted.

Indeed, the possible commands are limited to acceleration, brak-
ing, and turning left/right. Also, each game starts with the begin-
ning of the track: It is easier to identify the initial status of the game
to replicate, as opposed, e.g., to open-world games.

3.1 Overlay Detection
Given a gameplay video as input we first need to detect the game
control overlay (i.e., the part of the screen showing the actions
performed by the player). More specifically, we need to (i) filter
the frames in which the overlay is present (control overlays might
be temporarily obstructed in certain frames and, thus, not reliable
for input extraction), and (ii) identify the overlay elements that
represent input devices (e.g., buttons). Note that overlays might be
positioned differently in different videos. Thus, to achieve our two
goals, we first identify the position of the overlay in the specific
video, then we filter out frames that do not have the overlay, and
we use the shapes identified to distinguish the parts of the overlay.

Identifying the overlay and building the mask. Our first
step is to run PyShapes [27] on each frame, with the goal of iden-
tifying regular shapes (e.g., rectangles and triangles) shown on
screen. Then, we automatically identify a frame in which the over-
lay featuring the game controls is clearly visible and identifiable.

3 https://www.nadeo.com/ 4 https://www.ubisoft.com/en-us/

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Towards the Automatic Replication of Gameplays to Support Game Debugging Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

(a) Reference Image (b) Reference Image

(c) Mask extracted

Figure 1: Process used to rank and extract mask.

To do this, we manually define a set of rules regarding the num-
ber, the types, and the relationships between the (detected) shapes
that are supposed to compose the overlay of the game at hand.
The mask of the overlay is extracted from one of the frames for
which all such rules are met. Note that the rules are highly game-
and overlay-dependent. For Trackmania, the mask must include
a triangle pointing to the right, a triangle pointing to the left (for
analog stick inclination) and two rectangles in the center (i.e., ac-
celeration and reverse). If we find exactly two triangles and two
rectangles with the previously-mentioned relationships, we assume
we found a good candidate for extracting the overlay mask. The
mask is defined on the basis of the edges of the detected shapes.
An example of this is shown in Figure 1b, where the green shapes
will be considered as relevant, while the red ones will not. The
process involves locating a frame with clearly visible controls and
exporting a corresponding mask (Fig. 1c).

Filtering out frames without the overlay. We first extract
from a given frame the pixels that are in the overlay mask. Then,
based on the assumption that we do not know the color of the edges
of the overlay, we convert such pixels in grayscale. We obtain an
linear array of pixels in the order they appear in the image scanning
first the rows (left-right) and then the columns (top-bottom). We
extract measures to aggregate such an array of pixels, each of which
is represented by a single value ranging between 0 and 255. Such
measures are: (i) maximum (i.e., the brightest color), minimum (i.e.,
the darkest color), mean, variance, contrast (i.e.,

∑𝑛
𝑖=1 (𝑥𝑖 − 𝑥)2),

and homogeneity (i.e.,
∑𝑛
𝑖=1

𝑥𝑖
1+(𝑥−𝑥 )2 ) where x stands for the pixel

value of each pixel in the array. We train a Random Forest model
[8] using such measures as features to classify whether or not the
frame contains the overlay.

3.2 Control Extraction
Once detected the controls overlay, we extract the inputs from each
frame, creating a sequence that can be played back.

For each frame, we extract a value representing the activation of
each control supported by the game. We support two types of input

devices: buttons, which can be either pressed or not (i.e., they can be
represented through boolean values), and mono-dimensional sticks,
that can have in-between positions (i.e., they can be represented
as decimal numbers). We assume that each shape in the overlay
corresponds to a specific game input device, which can be either a
button or a joystick, and that developers manually map each overlay
shape to the input device at hand. For example, the control overlay
of Trackmania is composed of (i) top and bottom arrows that map
the acceleration and reverse commands (buttons), and (ii) left and
right arrows that represent the inclination angle of the analog stick.
The top and bottom arrows are mapped to the respective buttons
on the pad, while the left and right arrows are mapped to the same
device (main analog stick of the pad): the right and left arrow values
are mapped to positive and negative 𝑥-axis values of the analog
stick, respectively. We use two different procedures to extract the
input value for overlay shapes representing buttons and sticks.

Buttons. For buttons, the shape in the overlay is completely
coloredwith an overlay-dependent color when the button is pressed,
while it might be transparent (depending on the overlay at hand)
when the button is not pressed. Since the color used by the overlay
to represent the “button pressed” event strictly depends on the
overlay at hand and on its settings, we take such a color (active color)
as an input for this step. We first extract all the pixels contained
in the overlay shape. Then, we check if all the pixels are within
a certain distance from the active color: If they are, it means the
button is pressed, otherwise it is not. We do this because the active
color might not fully cover the game capture below, but it might
be semi-transparent. To compute the distance between pixel colors
we compute the difference between each color channel in the RGB
space (red, green, and blue) and sum them. We say that a pixel is
equal to the active color if the distance between them is lower than a
threshold 𝑡 . For our experiments, we use the threshold 𝑡 = 50, which
was determined through manual experimentation to optimally suit
the purpose of detecting similar colors.

Sticks. For sticks, the shape in the overlay is gradually colored
(again, with an overlay-dependent color) to represent the percent-
age of stick inclination. To predict the percentage in the arrows,
we use a regression machine-learning model. The model can es-
timate the percentage value of inclination of a stick for a given
overlay element. To do this, since we assume a shape represents
mono-directional sticks (we do not support bi-directional sticks),
we first summarize the whole shape content by extracting some
pixels from it.

Specifically, for the triangular shapes used in the overlay of
Trackmania, we extract the pixel lines beside the upper- and lower-
edges of the triangle. In addition, an orthogonal line is derived
from the center of the left or right base to the opposite vertex. This
extraction process aims to provide the model with information
about how colored is the triangle. We use the Bresenham’s line
algorithm [35] to get the pixel lines from the overlay shape. For
each line of pixels we compute two measures. The first one repre-
sents the size of the longest sequence of consecutive pixels that are
within a certain distance from the active color, while the second
one represents the percentage of pixels that are within a certain
distance from the active color (i.e., we also count pixels that are not
consecutive, for example when some other elements go above the
overlay). We compute the distance between pixel colors in the same

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

way we do for buttons and filter them based on the same threshold
𝑡 . We use such measures, extracted for each line, as features for a
linear regression model that predict the stick inclination in a range
between 0 and 100, based on the overlay behaviour. A training set
is needed for this step, which can be easily built for overlays that
also report the numeric value of the percentage of inclination.

3.3 Gameplay Reproduction
We implement an agent through which we execute the sequence of
commands extracted from the gameplay video.We implemented the
agent using the emulator for the gamepad available in vgamepad
[33]. We take as input the output of the previous step to create
a simplified list of commands for the gamepad APIs. We set the
frame-rate of the game at 30 FPS. Then, to replicate the commands,
we make sure that we replicate the input devices status inferred
in the previous step each 1

30 of a seconds. If a given frame 𝑖 is
classified as without overlay during the first step, there will be no
input associated to it. In such cases, we assume the input status did
not change from the previous frame and, thus, we keep the input
devices status extracted for the frame 𝑖 − 1.

4 EMPIRICAL STUDY DESIGN
The goal of our study is to understand if it is possible to detect
command acquisition and replicate the game through RePlay. We
aim to answer the following research questions (RQs):
RQ1: To what extent is RePlay effective in identifying frames that

include the controls overlay?
RQ1 assesses the performance and reliability of the ap-
proach in identifying frames that contain the control over-
lay.

RQ2: To what extent does RePlay allow to infer the input com-
mands?
RQ2 evaluate the accuracy of the approach to infer input
commands in the gameplay analysis.

RQ3: To what extent does the agent allow to reproduce the games?
With this last RQ, the goal is to evaluate the accuracy of the
agent to reproduce the gameplay, based on the command
gathered with RePlay

4.1 Context Selection
To evaluate the first two steps of RePlay (RQ1−2), we built three
annotated datasets. First, we randomly sampled 3 gameplay videos
of Trackmania from Twitch (∼10 hours), downloaded them, and
extracted the frames after fixing the frame-rate at 30 FPS. We sam-
pled 496, 770 frames and annotated them by indicating whether the
overlay was visible or not. This allowed us to define the dataset
𝐷𝑜𝑣𝑒𝑟𝑙𝑎𝑦 , which contains pairs ⟨𝑓 𝑟𝑎𝑚𝑒, 𝑜𝑣𝑒𝑟𝑙𝑎𝑦⟩. We further sam-
pled 165 frames and manually annotate them with the information
regarding the status of the two buttons (pressed or not pressed)
based on the information provided in the overlay (i.e., their color).

As a result, we defined the dataset 𝐷𝑏𝑢𝑡𝑡𝑜𝑛𝑠 , which contains
triples ⟨𝑓 𝑟𝑎𝑚𝑒,𝑏𝑢𝑡𝑡𝑜𝑛, 𝑠𝑡𝑎𝑡𝑢𝑠⟩, where each frame is repeated twice
(one for each 𝑏𝑢𝑡𝑡𝑜𝑛) and 𝑠𝑡𝑎𝑡𝑢𝑠 is a categorical variable (pressed
or not pressed). Finally, some overlays show inside the triangles
the percentage number indicating the stick inclination. We rely
on them to build a third dataset of randomly sampled 246 frames.

We manually labeled them with the percentage indicated in the
triangles. Thus, we obtained the dataset 𝐷𝑠𝑡𝑖𝑐𝑘 , which contains
triples ⟨𝑓 𝑟𝑎𝑚𝑒, 𝑠𝑡𝑖𝑐𝑘, 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒⟩, where each frame is repeated
twice (one for each 𝑠𝑡𝑖𝑐𝑘) and 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 is a numerical (integer)
variable ranging from 0 to 100. To evaluate the last step of RePlay
(RQ3) we built a last dataset. We randomly sampled 9 videos report-
ing entire game sessions of Trackmania from Twitch, all of them
different from the ones used for building the previous datasets. Be-
sides, we recorded 31 gameplay videos using the same maps and
overlay shown in the Twitch clips. We use the whole RePlay on
such videos to extract commands and define the agents to replicate
them.We ran each game with the agent as a player and recorded the
videos. Thus, as a result, we obtained 𝐷𝑔𝑎𝑚𝑒𝑠 , which contains pairs
⟨𝑣𝑖𝑑𝑒𝑜𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 , 𝑣𝑖𝑑𝑒𝑜𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑑 ⟩, where 𝑣𝑖𝑑𝑒𝑜𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 is the video of
the game played by a human player and 𝑣𝑖𝑑𝑒𝑜𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑑 is the one
played by the agent defined with RePlay. Figure 2 shows an example
of a frame paired with the portion of the image exported.

Figure 2: Example of frame and controls portion exported.

4.2 Data Collection and Data Analysis
To addressRQ1, we use𝐷𝑜𝑣𝑒𝑟𝑙𝑎𝑦 . For each instance ⟨𝑓 𝑟𝑎𝑚𝑒, 𝑜𝑣𝑒𝑟𝑙𝑎𝑦⟩,
we first extracted the features previously defined for the first step of
RePlay from 𝑓 𝑟𝑎𝑚𝑒 . Then, we trained and tested our model on the
dataset containing such features and the 𝑜𝑣𝑒𝑟𝑙𝑎𝑦 value as a label.
We used the implementation and default configuration of Random
Forest available in Weka [15]. We ran a 10-fold cross validation
to assess the performance of the trained model. We compute and
report accuracy, precision, and recall.

To answerRQ2, we ran two separate evaluations for buttons and
analog sticks. As for the former, we use 𝐷𝑏𝑢𝑡𝑡𝑜𝑛𝑠 : For each instance
⟨𝑓 𝑟𝑎𝑚𝑒,𝑏𝑢𝑡𝑡𝑜𝑛, 𝑠𝑡𝑎𝑡𝑢𝑠⟩, we ran our button pression detection ap-
proach on the 𝑓 𝑟𝑎𝑚𝑒 for the shape of the 𝑏𝑢𝑡𝑡𝑜𝑛 at hand. We com-
pare the predicted button pression status with the 𝑠𝑡𝑎𝑡𝑢𝑠 label. We
report accuracy, precision, and recall for such a step. As for the latter,
we use𝐷𝑠𝑡𝑖𝑐𝑘𝑠 : Again, for each instance ⟨𝑓 𝑟𝑎𝑚𝑒, 𝑠𝑡𝑖𝑐𝑘, 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒⟩,
we extracted from the 𝑓 𝑟𝑎𝑚𝑒 the features defined for the second
step of RePlay (stick inclination) for the shape of the specific 𝑠𝑡𝑖𝑐𝑘
at hand.We trained and test a linear regression model on the dataset
containing the extracted features and the 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 value as labels,
again using the implementation and default configuration available
in Weka. We ran a 10-fold cross validation to assess the perfor-
mance of such a model. We report the obtained Mean Absolute
Error (MAE) and Relative Absolute Error (RAE).

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Towards the Automatic Replication of Gameplays to Support Game Debugging Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

To address RQ3, we manually compared, for each instance of
𝐷𝑔𝑎𝑚𝑒𝑠 , the 𝑣𝑖𝑑𝑒𝑜𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 and 𝑣𝑖𝑑𝑒𝑜𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑑 by extracting 1-second
clips every 3 seconds of the videos. We started from the beginning
of the videos and proceeded until we found a difference in the clips,
by synchronising the two videos based on the start of the control
sequences. We consider the clips different if any of the control sec-
tions are not matching exactly. We measure, for each video, time
percentage of correctly replicated game by dividing the time at
which the first difference has been found by the video duration.

4.3 Replication Package
We publicly release the implementation of RePlay and the script
we used to run the experiment and the dataset of results for each
RQs in our replication package [1].

5 EMPIRICAL STUDY RESULTS
In this section we discuss the achieved results for research question.

The results of RQ1 show that the model has an accuracy of 98%
and precision and recall values of 0.99 in overlay detection. Based
on the evaluation results, we can conclude that the model to identify
frames showing the overlay, in our context, is highly effective.

Regarding the button pression detection (RQ2), RePlay achieves
99.0% of precision, 97% of recall 96% of AUC. As for the analog
stick (again, RQ2) inclination prediction, instead, RePlay achieves
Mean Absolute Error of 3.16 and a Relative Absolute Error of 12.88%.
While the button detection is very promising, we observed that
the models makes a small error in predicting the stick inclination
which could hamper the perfect replication of a game.

Finally, as for RQ3, we found that our agents can reproduce,
on average 47.23% of the games we analyzed. While this result
might seem slightly underwhelming, it is important to consider
the difficulty of the tracks. In particular, the agent finds in tight
turns and very rapid changes of direction especially difficult. This
also happens when the player performs maneuvers very close to
the boundaries of the map, such as walls. On the other hand, if the
turn is simple, the agent is generally able to complete the entire
turn exactly as in the original video. This observed behavior of the
agents may have a strong impact on the accuracy of specific games.

We conducted an additional analysis to evaluate to what extent
the agents’ actions are synchronized with the players actions. To
this end, we continued analyzing the 1-second clips also after the
first error and only focused on the overlays. This allowed us to check
what would have happened if the agent did not make a mistake. In
this case, we found that, on average, 81.21% of the commands are
performed correctly.

The results obtained during the analysis aimed to answer RQ3 re-
mains reliable and enables us to evaluate the quality of the proposed
approach, as well as the implementation of the agent involved in
the gameplay replication process.

6 THREATS OF VALIDITY
In this section we summarize the threats of validity of our work.

Construct Validity. In our evaluation, we assumed that the game-
play videos, that we want to reproduce, report an overlay that
shows user input commands through coloured each key input.

However, in real-world scenarios, gameplay videos do not always
feature an overlay showing input playback, and when they do, they
do not necessarily follow the standards used in our study as a
reference.

Internal Validity. The selection of the threshold for extracting
commands through colour similarity introduces a potential bias that
may influence the overall accuracy of overlay commands extraction.
Additionally, the accuracy of the models involved in the processing
applied and the potential error that resides within them can have
an impact on the overall outcome.

External Validity. While certain components of our approach (i.e.,
frame identification) are agnostic to the specific game used, others
may exhibit dependence (i.e., controls overlay).

7 CONCLUSION AND FUTUREWORK
Video games are one of the most solid pillars of the development
industry, so improving the stages of the software development
process can be important to support companies in creating better
gaming experiences. We presented RePlay, a simple approach able
to (i) distinguish frames with command overlay from those without,
(ii) extract commands and (iii) replicate the games. Despite the
very promising results, RePlay also has clear limitations. First, it
requires that the gameplay videos report an overlay that shows
user input commands. However, this is not always true. Second,
some steps of RePlay are closely dependent on the game under
consideration, restricting its generalizability unless these aspects
are tailored for the targeted game. Also, we assume that game
overlays are defined as specific geometric shapes. To adapt this
approach to new games, it is required (i) the extraction of commands
and (ii) the definition of an appropriate mask. To mitigate both such
limitations, future research can explore the use of reinforcement
learning, similarly to previous work [2, 22, 32]. This strategy would
allow to make our approach less video game-dependent and even
overlay-independent.

REFERENCES
[1] Anonymus. 2023. Replication Package of "Towards the Automatic Repli-

cation of Gameplays to Support Game Debugging". https://figshare.com/s/
2d17a9013bd18d295c8c.

[2] Sinan Ariyurek, Aysu Betin-Can, and Elif Surer. 2019. Automated video game
testing using synthetic and humanlike agents. IEEE Transactions on Games 13, 1
(2019), 50–67.

[3] Bowen Baker, Ingmar Kanitscheider, Todor Markov, Yi Wu, Glenn Powell, Bob
McGrew, and Igor Mordatch. 2019. Emergent tool use from multi-agent autocur-
ricula. arXiv preprint arXiv:1909.07528 (2019).

[4] Lingfeng Bao, Jing Li, Zhenchang Xing, Xinyu Wang, Xin Xia, and Bo Zhou.
2017. Extracting and analyzing time-series HCI data from screen-captured task
videos. Empirical Software Engineering 22, 1 (2017), 134–174.

[5] Lingfeng Bao, Jing Li, Zhenchang Xing, Xinyu Wang, and Bo Zhou. 2015. scvRip-
per: video scraping tool for modeling developers’ behavior using interaction data.
In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering,
Vol. 2. IEEE, 673–676.

[6] Joakim Bergdahl, Camilo Gordillo, Konrad Tollmar, and Linus Gisslén. 2020.
Augmenting automated game testing with deep reinforcement learning. In 2020
IEEE Conference on Games (CoG). IEEE, 600–603.

[7] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław
Dębiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris
Hesse, et al. 2019. Dota 2 with large scale deep reinforcement learning. arXiv
preprint arXiv:1912.06680 (2019).

[8] Leo Breiman. 2001. Random Forests. Machine Learning 45, 1 (2001), 5–32.
[9] Bum Hyun Lim, Jin Ryong Kim, and Kwang Hyun Shim. 2006. A load test-

ing architecture for networked virtual environment. In 2006 8th International

5

https://figshare.com/s/2d17a9013bd18d295c8c
https://figshare.com/s/2d17a9013bd18d295c8c


581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Conference Advanced Communication Technology, Vol. 1. 5 pp.–848. https:
//doi.org/10.1109/ICACT.2006.206095

[10] C. Cho, D. Lee, K. Sohn, C. Park, and J. Kang. 2010. Scenario-Based Approach for
Blackbox Load Testing of Online Game Servers. In 2010 International Conference
on Cyber-Enabled Distributed Computing and Knowledge Discovery. 259–265.
https://doi.org/10.1109/CyberC.2010.54

[11] Fernando De Mesentier Silva, Scott Lee, Julian Togelius, and Andy Nealen. 2017.
AI as evaluator: Search driven playtesting of modern board games. In WS-17-01
(AAAI Workshop - Technical Report). AI Access Foundation, 959–966. 31st AAAI
Conference on Artificial Intelligence, AAAI 2017.

[12] "Satista Gaming". 2023. Number of hours streamed on leading gaming live
stream platform. https://www.statista.com/statistics/1030809/hours-streamed-
streamlabs-platform/.

[13] "Satista Gaming". 2023. Satista Gaming. https://www.statista.com/topics/1680/
gaming.

[14] Emanuela Guglielmi, Simone Scalabrino, Gabriele Bavota, and Rocco Oliveto.
2023. Using gameplay videos for detecting issues in video games. Empirical
Software Engineering 28, 6 (2023), 136.

[15] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,
and Ian H Witten. 2009. The WEKA data mining software: an update. ACM
SIGKDD explorations newsletter 11, 1 (2009), 10–18.

[16] S. Iftikhar, M. Z. Iqbal, M. U. Khan, and W. Mahmood. 2015. An automated model
based testing approach for platform games. In 2015 ACM/IEEE 18th International
Conference on Model Driven Engineering Languages and Systems (MODELS). 426–
435. https://doi.org/10.1109/MODELS.2015.7338274

[17] Sidra Iftikhar, Muhammad Zohaib Iqbal, Muhammad Uzair Khan, and Wardah
Mahmood. 2015. An automated model based testing approach for platform games.
In 2015 ACM/IEEE 18th International Conference on Model Driven Engineering
Languages and Systems (MODELS). IEEE, 426–435.

[18] Thanapong Intharah and Gabriel J Brostow. 2018. Deeplogger: Extracting user
input logs from 2d gameplay videos. In Proceedings of the 2018 Annual Symposium
on Computer-Human Interaction in Play. 221–230.

[19] YungWoo Jung, Bum-Hyun Lim, Kwang-Hyun Sim, HunJoo Lee, IlKyu Park,
JaeYong Chung, and Jihong Lee. 2005. VENUS: The Online Game Simulator
Using Massively Virtual Clients. In Systems Modeling and Simulation: Theory and
Applications. 589–596.

[20] Chris Lewis, JimWhitehead, and NoahWardrip-Fruin. 2010. What went wrong: a
taxonomy of video game bugs. In Proceedings of the fifth international conference
on the foundations of digital games. 108–115.

[21] Dayi Lin, Cor-Paul Bezemer, and Ahmed E Hassan. 2019. Identifying gameplay
videos that exhibit bugs in computer games. Empirical Software Engineering 24,
6 (2019), 4006–4033.

[22] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing atari with
deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).

[23] Ciprian Paduraru, Miruna Paduraru, and Alin Stefanescu. 2022. RiverGame-a
game testing tool using artificial intelligence. In 2022 IEEE Conference on Software
Testing, Verification and Validation (ICST). IEEE, 422–432.

[24] Luca Pascarella, Fabio Palomba, Massimiliano Di Penta, and Alberto Bacchelli.
2018. How is video game development different from software development
in open source?. In Proceedings of the 15th International Conference on Mining
Software Repositories, MSR 2018, Gothenburg, Sweden, May 28-29, 2018, Andy

Zaidman, Yasutaka Kamei, and Emily Hill (Eds.). ACM, 392–402.
[25] Johannes Pfau, Jan David Smeddinck, and Rainer Malaka. 2017. Automated

Game Testing with ICARUS: Intelligent Completion of Adventure Riddles via
Unsupervised Solving. Association for Computing Machinery, New York, NY,
USA.

[26] Luca Ponzanelli, Gabriele Bavota, Andrea Mocci, Massimiliano Di Penta, Rocco
Oliveto, Barbara Russo, Sonia Haiduc, and Michele Lanza. 2016. Codetube:
extracting relevant fragments from software development video tutorials. In
2016 IEEE/ACM 38th International Conference on Software Engineering Companion
(ICSE-C). IEEE, 645–648.

[27] "PyShapes". 2023. PyShapes. https://github.com/sudoRicheek/PyShapes.
[28] Ronnie ES Santos, Cleyton VCMagalhães, Luiz Fernando Capretz, Jorge S Correia-

Neto, Fabio QB da Silva, and Abdelrahman Saher. 2018. Computer games are
serious business and so is their quality: particularities of software testing in
game development from the perspective of practitioners. In Proceedings of the
12th ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement. 1–10.

[29] "Satista". 2023. Satista. https://www.statista.com/statistics/292056/video-game-
market-value-worldwide/.

[30] Adam M. Smith, Mark J. Nelson, and Michael Mateas. 2009. Computational Sup-
port for Play Testing Game Sketches. In Proceedings of the Fifth AAAI Conference
on Artificial Intelligence and Interactive Digital Entertainment (AIIDE’09). AAAI
Press, 167?172.

[31] "Truelist". 2023. Truelist. https://truelist.co/blog/gaming-statistics/.
[32] Rosalia Tufano, Simone Scalabrino, Luca Pascarella, Emad Aghajani, Rocco

Oliveto, and Gabriele Bavota. 2022. Using Reinforcement Learning for Load Test-
ing of Video Games. In 44th IEEE/ACM 44th International Conference on Software
Engineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022. ACM, 2303–2314.
https://doi.org/10.1145/3510003.3510625

[33] "Vgamepad". 2023. Vgamepad. https://github.com/yannbouteiller/vgamepad.
[34] Martin White, Mario Linares-Vásquez, Peter Johnson, Carlos Bernal-Cárdenas,

and Denys Poshyvanyk. 2015. Generating reproducible and replayable bug re-
ports from android application crashes. In 2015 IEEE 23rd International Conference
on Program Comprehension. IEEE, 48–59.

[35] William EWright. 1990. Parallelization of Bresenham’s line and circle algorithms.
IEEE Computer Graphics and Applications 10, 5 (1990), 60–67.

[36] Huijuan Wu, Yuepu Guo, and Carolyn B Seaman. 2009. Analyzing video data:
A study of programming behavior under two software engineering paradigms.
In 2009 3rd International Symposium on Empirical Software Engineering and
Measurement. IEEE, 456–459.

[37] Yuechen Wu, Yingfeng Chen, Xiaofei Xie, Bing Yu, Changjie Fan, and Lei Ma.
2020. Regression Testing of Massively Multiplayer Online Role-Playing Games.
In 2020 IEEE International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 692–696.

[38] Y. Zheng, X. Xie, T. Su, L. Ma, J. Hao, Z. Meng, Y. Liu, R. Shen, Y. Chen, and C.
Fan. 2019. Wuji: Automatic Online Combat Game Testing Using Evolutionary
Deep Reinforcement Learning. In 2019 34th IEEE/ACM International Conference
on Automated Software Engineering (ASE). 772–784.

[39] Yan Zheng, Xiaofei Xie, Ting Su, Lei Ma, Jianye Hao, Zhaopeng Meng, Yang
Liu, Ruimin Shen, Yingfeng Chen, and Changjie Fan. 2019. Wuji: Automatic
online combat game testing using evolutionary deep reinforcement learning. In
2019 34th IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 772–784.

6

https://doi.org/10.1109/ICACT.2006.206095
https://doi.org/10.1109/ICACT.2006.206095
https://doi.org/10.1109/CyberC.2010.54
https://www.statista.com/statistics/1030809/hours-streamed-streamlabs-platform/
https://www.statista.com/statistics/1030809/hours-streamed-streamlabs-platform/
https://www.statista.com/topics/1680/gaming
https://www.statista.com/topics/1680/gaming
https://doi.org/10.1109/MODELS.2015.7338274
https://github.com/sudoRicheek/PyShapes
https://www.statista.com/statistics/292056/video-game-market-value-worldwide/
https://www.statista.com/statistics/292056/video-game-market-value-worldwide/
https://truelist.co/blog/gaming-statistics/
https://doi.org/10.1145/3510003.3510625
https://github.com/yannbouteiller/vgamepad

	Abstract
	1 Introduction
	2 Related Work
	3 RePlay
	3.1 Overlay Detection
	3.2 Control Extraction
	3.3 Gameplay Reproduction

	4 Empirical Study Design
	4.1 Context Selection
	4.2 Data Collection and Data Analysis
	4.3 Replication Package

	5 Empirical Study Results
	6 Threats of Validity
	7 Conclusion and Future Work
	References

