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ABSTRACT
Context. The game industry is increasingly growing in recent years.
Every day, millions of people play video games, not only as a
hobby, but also for professional competitions (e.g., e-sports or speed-
running) or for making business by entertaining others (e.g., stream-
ers). The latter daily produce a large amount of gameplay videos
in which they also comment live what they experience. Since no
software and, thus, no video game is perfect, streamers may en-
counter several problems (such as bugs, glitches, or performance
issues). However, it is unlikely that they explicitly report such is-
sues to developers. The identified problems may negatively impact
the user’s gaming experience and, in turn, can harm the reputation
of the game and of the producer. Objective. We aim at proposing
and empirically evaluating GELID, an approach for automatically
extracting relevant information from gameplay videos by (i) identi-
fying video segments in which streamers experienced anomalies;
(ii) categorizing them based on their type and context in which
appear (e.g., bugs or glitches appearing in a specific level or scene
of the game); and (iii) clustering segments that regard the same
specific issue. Method. We will build on top of existing approaches
able to identify videos that are relevant for a specific video game.
These represent the input of GELID that processes them to achieve
the defined objectives. We will experiment GELID on several game-
play videos to understand the extent to which each of its steps is
effective.

CCS CONCEPTS
• Software and its engineering → Software evolution; Main-
taining software; Software defect analysis.
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1 INTRODUCTION
Video games are becoming an increasingly important form of ex-
pression in Today’s culture. Their sociological, economic, and tech-
nological impact is well recognized in the literature [13] and their
wide diffusion, particularly among the younger generations, has
contributed to the growth of the gaming industry in several direc-
tions. Playing video games is progressively becoming a work for
many: Some play for professional competitions (e.g., in e-sports or
speed-running), while others play to entertain others (e.g., stream-
ers) especially on dedicated platforms such as Twitch1. Besides
all challenges that are common to software systems, developing
and maintaining video games poses additional difficulties related
to complex graphical user interfaces, performance requirements,
and higher testing complexity. Concerning the latter point, games
tend to have a large number of states that can be reached through
different choices made by the player. In such a context, writing au-
tomated tests is far from trivial due to the need for an “intelligent”
interaction triggering the states exploration. Even assuming such
ability to explore the game space, determining what the correct
behavior is in a specific state usually requires human assessment,
with the exception of bugs causing the game to crash. Finally, addi-
tional complexity is brought by the non-determinism that occurs in
games because of multi-threading, distributed computing, artificial
intelligence and randomness injected to increase the difficulty of
the game [18].

Because of the few automated approaches available for quality
control in video game development [22], many games are released
with unknown problems that are revealed only once customers
start playing [28]. Since many streamers daily publish hours of
gameplay videos, it is very likely that some of them experience
such issues and leave traces of them in the uploaded videos. An
example is available in [10]: The game crashes as soon as the player
1 https://twitch.tv
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performs a specific action. The large amount of publicly available
gameplay videos, therefore, might be a goldmine of information
for developers. Indeed, such videos not only contain information
about which kinds of issues affect a video game, but they also
provide examples of interactions that led to the issue in the first
place, allowing its reproduction. In their seminal work on this topic,
Lin et al. [16] defined an approach able to automatically identify
videos containing bug reports. However, such an approach mostly
relies on the video metadata (e.g., its length) and it is not able to
pinpoint the specific parts of the video in which the bug is reported.
This makes it unsuitable as a reporting tool for game developers,
especially when long videos, which are not uncommon, are spot as
bug-reporting.

Our goal is to introduce GELID (GamEpLay Issue Detector), an
automated approach that aims at automatically extracting mean-
ingful segments of gameplay videos in which streamers report
issues and hierarchically organize them. Given some gameplay
videos as input, GELID (i) partitions them in meaningful segments,
(ii) automatically distinguishes informative segments from non-
informative ones by also determining the type of reported issue
(e.g., bug, performance-related), (iii) groups them based on the “con-
text” in which they appear (i.e., whether the issue manifests itself
in a specific game area), and (iv) clusters fragments related to the
same specific issue (e.g., the game crashes when a specific item
is collected). In this registered report, we present the plan of an
exploratory study to empirically evaluate GELID . We first aim to
extract training data for the machine learning model we plan to use
to categorize segments. To this end, we will use the approach by
Lin et al. [16] to identify candidate videos from which we can man-
ually label segments in which the streamer is reporting a bug. Then,
we will run GELID on a set of real gameplay videos and validate
its components by manually determining to what extent: (i) the
extracted segments are usable, by annotating their interpretability
(i.e., they can be used as standalone videos) and atomicity (i.e., they
can not be further split); (ii) the category determined by GELID is
correct, by computing typical metrics used to evaluate ML models
(e.g., accuracy and AUC); (iii) the clusters identified in terms of
context and specific issues are valid, by performing both a quanti-
tative (e.g., using metrics such as the MoJoFM [29]) and qualitative
analysis of the obtained clusters. Finally, we will validate GELID
as a whole and, specifically, the usefulness of the information it
provides by running a survey with developers.

2 BACKGROUND AND RELATEDWORK
Several works have focused the attention on the quality assurance of
video games analyzing the differences between traditional software
development and video games development [18, 22]. Given the goal
of our approach, we mainly focus our discussion on approaches
aimed at mining and manipulating gameplay videos for different
goals. Also, since GELID aims at automatically categorizing video
segments, we also discuss existing taxonomies of video game issues
we will use as a starting point to define our categories.

Table 1: Mapping between types of issues identified by
GELID and categories from the taxonomy by Truelove et al.
[28].

Issue Type Description Categories [28]

Logic

Issues related to the
game logic, regardless
of how information is
presented to the player.

Object Persistence
Collision of Objects
Inter. btw. Obj. Prop.
Position of Object
Context State
Crash
Event Occurrence
Interrupted Event
Triggered Event
Action
Value

Presentation

Issues related to
the game interface
(graphical- or audio-
related).

Game Graphics
Information
Bounds
Camera
Audio
User Interface

Balance Detrimental aspects in
terms of “fun”.

Artificial Intelligence
Exploit

Performance Performance-related is-
sues (e.g., FPS drops).

Implem. Response

2.1 Mining of Gameplay Videos
Some works targeted the automated generation of a comprehensive
description of what happens in gameplay videos (i.e., game com-
mentary). Examples of these works are the framework by Guzdial
et al. [11] and the approach presented by Li et al. [15] modeling
the generation of commentaries as a sequence-to-sequence prob-
lem, converting video clips to commentary. On the same line of
research, Shah et al. [24] presented an approach to generate au-
tomatic comments for videos by using deep convolutional neural
networks.

The main goal of our approach, however, is to detect issues in
gameplay videos. To the best of our knowledge, the onlywork aimed
at achieving a similar goal is the one by Lin et al. [16]. The authors
investigate whether videos in which the streamer (player) experi-
ences faults can be automatically identified from their metadata.
They observe that naïve approaches based on keywords matching
are inaccurate. Therefore, they propose an approach that uses a
Random Forest classifier [12] to categorize gameplay videos based
on their probability of reporting a bug. Lin et al. [16] rely on Steam2

to find videos related to specific games. While Steam is mainly a
marketplace for video games, it also allows users to interact with
each other and share videos. On a daily basis, for 21.4% of the games
on Steam, users share 50 game videos, and a median of 13 hours
of video runtime [16]. Hence, manually watching long gameplay
videos classified as buggy still requires a considerable manual ef-
fort. GELID aims at reducing the effort required by developers by
segmenting videos and augmenting the provided information, by
including also (i) the type of issue found, (ii) the context (i.e., area

2 https://steamcommunity.com/

https://steamcommunity.com/
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Figure 1: The workflow of GELID

of the game) in which it occurred, and (iii) other segments in which
the same issue was reported (possibly from different videos).

2.2 Taxonomies of Video Game Issues
Video games can suffer from a vast variety of problems. Lin et al.
[16] do not distinguish among the types of issues reported in the
videos identified as “bug reporting”, while this is one of our goals.

A recent taxonomy of issues in video games by Truelove et al.
[28] (which extends the one by Lewis et al. [14]) reports 20 different
kinds of issues. We will use such a taxonomy as a base to define the
labels we want to assign to the video segments. However, using all
such labels might be counterproductive since it is likely to observe a
long-tail distribution (i.e., a few types of issues appear in most of the
video fragments, while several other issues are quite rare or do not
even appear). Therefore, starting from such a taxonomy, we define
macro-categories by clustering similar fine-grained categories. We
identified four labels, as reported in Table 1: Logic, Presentation,
Balance, and Performance.

3 GELID IN A NUTSHELL
GELID takes as input a set of gameplay videos related to a specific
video game, and it returns a hierarchy of segments of gameplay
videos organized on three levels: (i) context (e.g., level or game
area), (ii) issue type (e.g., bug or glitch), and (iii) specific issue (e.g.,
game crashes when talking to a specific non-player character).

Fig. 1 shows an overview of the GELID workflow. We describe
below in more detail the main steps of GELID.

3.1 Video Segmentation
The first step of GELID consists in partitioning the video in mean-
ingful segments that can be later analyzed as standalone shorter
videos. In other words, GELID aims at finding a set of “cut points”
in the video. In the computer vision literature, a similar problem
is referred to as “shot transitions detection”. The aim is to detect
sudden changes in the video content. An example of approaches
defined to solve such a problem is the one introduced by Tang et al.

[26]. Video-related information, however, might not be sufficient
to find cuts in gameplay contents. For example, if the game crashes
and a shot transition detection approach is used to cut the video,
the second in which the crash happens would probably be selected
for segmentation. The streamer, however, might need a few seconds
to react to such an event by commenting what happened providing
useful information for the game developers. Thus, by using shot
transitions as cut points, the spoken content related to the issue
might be erroneously put in the subsequent segment. To solve this
problem, GELID relies on a blended video- and subtitle-based cut
point detection algorithm. First, we detect shot transitions using
the technique defined by Tang et al. [26]. Then, we shift each shot
transition detected by 𝑘 seconds (where 𝑘 is a parameter that we
will tune as part of our experiments), to account for the reaction
time of the streamer. Finally, for each shifted shot transition, we will
set a cut point at the moment in which the sentence pronounced by
the streamer terminates, based on subtitles data. For example, let us
consider the case in which a shot transition is detected at the minute
13:45 (mm:ss) with 𝑘 = 5. GELID first shifts the detected shot tran-
sition at 13:50 (13:45 + 𝑘). Assuming that at 13:50 the streamer is in
the middle of a sentence, and they finish pronouncing it at 14:05,
GELID sets a cut point at 14:05.

3.2 Segment Categorization
In this second step, GELID aims at categorizing segments based on
their content. GELID considers five labels: One for non-informative
segments (i.e., the ones not reporting issues), and four for informa-
tive segments (i.e., the ones reported in Table 1). Non-informative
segments are discarded and not considered in the next steps.

Previous work successfully used machine-learning to solve sim-
ilar classification problems in the context of mobile app reviews
[4, 23]. Such approaches mainly rely on textual features. In our
context, we also have video and audio, which could help to cor-
rectly classify the segments. For example, segments with no video
might be more likely to be non-informative, even if a comment by
the player is present. Therefore, we include in GELID also video-
and audio-based features. We will test different machine-learning
algorithms to check which one allows to obtain the best results.
Specifically, we will evaluate Random Forest [12], Logistic Regres-
sion [20], and Neural Network [8]. It is worth noting that, regardless
of how precisely it is detected, a segment may show several issues
at a time. For example, the game may start lagging and, at the same
time, graphical glitches appear. At this stage, we do not handle
segments reporting more than a issue at a time. In other words, we
assume that each segment has exactly one label.

3.3 Context-based Segment Grouping
After having collected and categorized segments that contain anom-
alies, we group them accordingly to their context. With “context”
we refer to the part of the game (e.g., a specific game level or area)
in which the anomaly occurred. This may be helpful to provide the
videos to the team in charge of the development of that specific
part of the game.

Such a step is important for two reasons: (i) Developers analyz-
ing hundreds of videos related to a specific game may experience
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information overload and this, in turn, would reduce the effective-
ness of the video segments filtering step; (ii) Knowing the context
in which more anomalies occur allows the developer to identify
where attention needs to be focused to improve the gaming experi-
ence. To achieve this goal, we will rely on video information: The
assumption is that videos with similar frames regard, most likely,
the same context. Since the number of scenes is not necessarily
known a priori, we will use a non-parametric clustering technique.
Specifically, we will experiment with DBSCAN [7], OPTICS [1],
and Mean Shift [9]. We use as the distance metric for clustering a
measure based on the image similarity [19, 25]. Specifically, given
two videos, A and B, we first detect the key-frames in both the
videos; Then, we compute the image similarity of each key-frame
of A with each key-frame of B. Finally, we compute the average.

3.4 Issue-based Segment Clustering
A set of video segments of the same kind (e.g., bugs) and reported
in the same context might still be hard to manually analyze for de-
velopers. For example, if 100 segments report bugs for a given level,
developers need to manually analyze all of them. It might be the
case, however, that most of them report the same specific bug (e.g.,
a game object disappears). To reduce the effort required to analyze
such information, we cluster segments reporting the same specific
issue. This would allow developers to analyze a single segment
for each cluster to have an overview of the problems affecting the
specific area of the game. To achieve this goal, we will rely on both
textual and image-based features, and we will use non-parametric
clustering to create homogeneous groups. Textual features can help
grasping the broad context (e.g., objects disappearing or anomalous
dialogues). Image-based features can help finding visually similar
problems (e.g., in the case of glitches). Similarly to the previous step,
we will test several non-parametric clustering algorithms, such as
DBSCAN [7], OPTICS [1], and Mean Shift [9].

4 RESEARCH QUESTIONS
The goal of our study is to understand to what extent GELID allows
to extract meaningful information from gameplay videos.

To achieve this goal, our study is steered by the following re-
search questions (RQs).

RQ1: How meaningful are the gameplay video segments extracted
by GELID?

The first RQ aims at evaluating the quality of the segments extracted
by GELID from gameplay videos in terms of their interpretability
and atomicity.

RQ2: To what extent is GELID able to categorize gameplay video
segments?

With this second RQ we want to understand which features and
which classification algorithm allow to train the best model for
categorizing gameplay video segments (second step of GELID), and
what is the accuracy of such a model.

RQ3: What is the effectiveness of GELID in grouping gameplay
video segments by context?

In the third RQ we aim to define the best clustering algorithm for
grouping segments based on the game context (third step of GELID),
and how effective is such an algotithm in absolute terms.

RQ4:What is the effectiveness of GELID in clustering gameplay
video segments based on the specific issue?

Similarly to RQ3, with this last RQ, we want to understand which
features and clustering algorithm allow to achieve the best results
for clustering segments based on the specific issue (fourth step of
GELID), and how effective is such an algorithm in absolute terms.

RQ5: To what extent is the information provided by GELID useful
to practitioners?

With this last RQ, we want to evaluate GELID as a whole. Specifi-
cally, we want to understand the perceived usefulness of the infor-
mation provided by GELID, and which pieces of information are
more relevant than others according to practitioners.

5 DATASETS
To answer our RQs and validate the defined approach, we will rely
on gameplay videos from YouTube. While other platforms, even
more video game-oriented, could be used (e.g., Twitch), YouTube
provides APIs for searching videos of interest and it also allows to
download videos including subtitles, which are required by GELID.
While subtitles can be automatically generated when the video
lacks them, the results could be noisy and, in this phase, we aim at
evaluating GELID assuming high-quality input data.

In our study, we will collect three datasets. The first one, com-
posed by video segments, will be used for training the supervised
model used in step 2 of GELID (i.e., segment categorization). The
second one, composed by complete videos, will be used for evaluat-
ing the single components of GELID and answer RQ1−4. The third
one, composed by the output of GELID on a set of gameplay videos
of a specific video game, will be used for evaluating GELID as a
whole with practitioners. We will publicly release all the datasets
to foster future research in this field.

5.1 Training Data
We will use the APIs provided by YouTube to select a random sam-
ple of gameplay videos in English from a diverse set of video games.
While our premise is that several gameplay videos report issues, we
also expect that the issues-reporting videos represent a minority of
the entire gameplay videos population (thus the relevance of our
approach). Therefore, to support the construction of the dataset
containing training data for the categorization step, we will use
the approach defined by Lin et al. [16] and consider only videos
identified as issue-reporting. Since our approach works at segment-
level, we expect to collect a sufficient number of non-informative
segments from videos reporting issues. Thus, the issue-reporting
videos will provide training data for all categories of segments (i.e.,
non-informative plus the four informative sub-categories). Also,
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the approach we will use is not perfect, so we will end up ana-
lyzing videos not reporting bugs anyway. At this stage, we will
only include videos with subtitles since GELID relies on NLP-based
features computed on them. Some YouTube videos have manually-
defined subtitles, while others have automatically generated ones.
We include both of them. Indeed, while it is possible that the second
category contain errors, this risk also exists in manually gener-
ated ones. Also, the general quality of the subtitles generated by
YouTube is generally quite high for the English language.

A human evaluator will manually split each video into mean-
ingful segments, and at least two human evaluators will label each
segment as logic, presentation, balance, performance, or non-
informative. At this stage, our goal is to collect at least 1,000
labeled segments. To achieve this goal, we will run the previously
mentioned process on batches of 500 videos at a time, until we col-
lect the desired target number of segments. For each batch, we will
randomly sample YouTube videos matching a generic query (e.g.,
“gameplay”) to ensure that the final sample is representative enough.
We choose to include at least 1,000 segments in the training set
because (i) such a number would probably allow us to appropriately
train the model, and (ii) it is sufficient to have a representative set
of segments. Indeed, assuming an infinite population (i.e., we have
an indefinitely high number of segments) and a 95% confidence
level, a sample of 1,000 segments allows us to have a 3.1% margin
of error, which we find acceptable in this context. To understand
whether it is feasible to collect such an number of segments, we run
a preliminary analysis. We searched for YouTube videos regarding
the popular game Grand Theft Auto 5 (GTA 5). We found a total
of 9,460,000 gameplay videos results. Given such a high number
of results for a single video game, we believe that finding 1,000
segments is feasible.

Finally, it is possible that the training set contains a few instances
for some categories of issue types. For this purpose, if the training
set is unbalanced, wewill use oversampling techniques (e.g., SMOTE
[3]) to generate synthetic instances for underrepresented categories.

5.2 Components Validation Data
To select videos on which we will validate the single components
of GELID, we will first need to select a small set of specific video
games. Indeed, the third and fourth steps of GELID are reasonable
only when segments from the same video game are given. To select
the video games to use, we will rely on the information available
on Steam, one of the largest video game marketplaces [27]. We will
select three video games that are both popular (e.g., for which many
gameplay videos exist) and that had several reported issues (e.g., for
which GELID gives the best advantage). More specifically, we will
select video games with many downloads, low review scores and
many patches. Then, we will collect a random sample of gameplay
videos related to each selected video game from YouTube. Also in
this case, we will select only English videos with subtitles (either
manually added or automatically generated). Since we will test
different machine-learning techniques (both for categorization and
clustering), we will need to tune their respective hyper-parameters.
To this aim, we will use 10% of the data acquired at this stage as
evaluation set, and the remaining 90% as test set.

Table 2: Questions for the survey we will run to answer RQ5.

Pr
e-
qu

es
t.

Question Type of response

Full name Text
Email address Text
Education Multiple selection (e.g., graduate)
Role Multiple selection (e.g., tester)
Years of experience Number

Q
ue
st
io
nn

ai
re

Context information
To what extent is context summary information useful? 5-point Likert scale
To what extent is the ability to navigate segments from contexts
useful?

5-point Likert scale

Please justify your answers Open response

Issue category information
To what extent is issue category summary information useful? 5-point Likert scale
To what extent is the ability to navigate segments from issue
categories useful?

5-point Likert scale

Please justify your answers Open response

Specific issue information
To what extent is specific issue summary information useful? 5-point Likert scale
To what extent is the ability to navigate segments from clusters
of specific issues useful?

5-point Likert scale

Please justify your answers Open response

Segments information
How useful would the segments be to understand issues? 5-point Likert scale
How useful would the segments be to reproduce issues? 5-point Likert scale

Global evaluation
How useful would GELID be during the closed testing phase? 5-point Likert scale
How useful would GELID be during the beta testing phase? 5-point Likert scale
How useful would GELID be during the production phase? 5-point Likert scale
What are the strengths of GELID? Open response
What are the weaknesses of GELID? Open response
Additional comments (optional) Open response

5.3 Approach Validation Data
To select videos on which we will validate GELID as a whole, we
will first select a video game on Steam and extract a set of gameplay
videos from YouTube about such a game. To do this, we will use the
exact same approach used to build the previously described dataset,
but with a fourth game. Then, we will feed GELID with such videos.
GELID, in turn, will provide information about (i) contexts (i.e., area
of the game), (ii) issue types (e.g., logic or presentation issue), and
(iii) specific issue. At this stage, we will use the best configuration
of GELID, based on the findings of RQ1−4 (e.g., the most accurate
categorization model). We will ask practitioners to evaluate the
information provided by GELID, as detailed in Section 6.

6 EXECUTION PLAN
We will run the following plan to answer our research questions
and conduct the study. We summarize the execution plan in Fig. 2.

6.1 Research Method for RQ1
To answer RQ1, we will evaluate the technique we defined with
different values of 𝑘 (streamer reaction times). Specifically, we will
instantiate our approach with 𝑘 in the set {0, 5, 10} seconds.

We will evaluate the segments detected by each variant of our
approach in terms of their (i) interpretability (i.e., it is possible to
watch the segment and acquire all the information needed to under-
stand what has been experienced by the streamer) (ii) the atomicity
(i.e., it is not possible to further split the segments). Such aspects are
complementary: It would be possible to maximize the interpretabil-
ity by creating few segments (e.g., just one for the whole video); this,
however, would result in lower atomicity since the segments could
be further divided into parts. Two human annotators will watch
segments generated by each technique and manually annotate each
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X

X

X

RQ1: Segmentation RQ2: Categorization RQ3: Clustering (context) RQ4: Clustering (issue)Component Evaluation Dataset

Manual evaluation of the
segments in terms of
interpretability and
atomicity

Evaluation of the model in
terms of accuracy, recall,  
precision, F1-score, and
AUC

Comparison between the
manually defined cluster
and the one defined by
GELID through MoJoFM

Comparison between the
manually defined cluster
and the one defined by
GELID through MoJoFM

Game selection by using
information available on
Steam; gameplay video
selection from YouTube

Manual clustering Manual clustering

X

X

X

GELID GELID

Gameplay video sample selection from YouTube; filtering with the approach
defined by Lin et al.; manual segmentation of the videos; manual  
categorization of each segment

Manual categorization

X

Training Set Approach Validation Dataset

GELID

Game selection from Steam; gameplay video extraction from
YouTube; segmentation, categorization, context-based and
issue-based clustering with GELID

RQ5: Usefulness of GELID

GELID

Survey with developers to
understand to what extent
GELID is useful

GELID
segmentation

GELID
categorization

GELID
ctx. clustering

GELID
iss. clustering

Figure 2: Summary of the study design.

segment in terms of its interpretability and atomicity on a 5-point
Likert scale. As for the first metric, we will ask the annotator to
evaluate to what extent he/she can fully understand what is hap-
pening based only on the segment itself. As for atomicity, instead,
we will ask annotators to assess if the segment can be further di-
vided in additional standalone (fully interpretable) segments. The
final score should be computed as 5 minus the number of additional
standalone segments that can be further extracted, or 1 if more than
four standalone segments are found. We will report the inter-rater
reliability between the annotators by using the Cohen’s kappa coef-
ficient [6]. Then, for each segment, we will compute the mean and
median interpretability and atomicity. Finally, we will compare the
tested techniques in terms of such metrics using a Mann-Whitney
U test [17], and adjusting the 𝑝-values resulting for multiple com-
parisons using the Benjamini and Hochberg procedure [2]. We will
also report the effect size, using the Cliff’s delta [5], to understand
the magnitude of differences observed. We run power analysis to
define an adequate sample size that allows us to detect possible
differences in terms of interpretability and atomicity among the
three groups of segments (i.e., with 𝑘 ∈ {0, 5, 10}). First, we are
interested in observing variations of at least 0.5 in the means of the
groups for both the metrics; smaller variations would likely be prac-
tically irrelevant. To determine the expected standard deviation,
we run 1,000 simulations in which we randomly assigned scores
between 1 and 5, and we computed, for each simulated assignment,
the standard deviation. We obtained values in the range [1.28, 1.54].
If we analyze 200 segments for each group, assuming the previ-
ously reported range of expected standard deviation values, we
expect to achieve a power in the range [90%, 97%]. If we simulate
the worst-case scenario in terms of standard deviation (i.e.,we have
half observations with the lowest score and the other half with
the highest score), we obtain a standard deviation of ∼ 2, which
leads to a 71% power. Even in such an unlikely scenario, we would

have acceptable power. Therefore, we plan to use groups of 200
segments.

6.2 Research Method for RQ2
To answer RQ2, we will train and test several approaches for cate-
gorization, using different sets of features and different machine
learning algorithms to understand (i) which features are more rele-
vant, and (ii) which machine learning technique allows to achieve
the best results. For each tested algorithm (i.e., Random Forest [12],
Logistic Regression [20], Neural Network [8]), we will define three
models including (i) textual features only, extracted from the subti-
tles (i.e., what the streamer says), (ii) video features only, extracted
from the video (i.e., what happens in the game), and (iii) all features
together. In total, we will compare nine models. We will explore
different types of NLP features, including bag-of-words [30] and
word2vec [21].

To train each model, we will use the training set described in
Section 5. To define a test set, instead, we will consider the seg-
ments obtained through the best segmentation technique, based
on the results of RQ1. Two human annotators will independently
analyze each segment and manually label them as logic, presenta-
tion, balance, performance, or non-informative. The human
annotators will discuss the cases of disagreement aiming at reach-
ing consensus. If no consensus can be found, the segment will be
discarded as ambiguous also for human evaluators.

For each model, we will report the global accuracy (i.e., per-
centage of correctly classified instances) and, for each class, the
achieved precision ( TP

TP+FP ), recall (
TP

TP+FN ), and AUC (Area Under
the ROC Curve).

6.3 Research Method for RQ3 and RQ4
To answer both RQ3 and RQ4, we will test the following non-
parametric clustering techniques: DBSCAN [7], OPTICS [1], and
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Mean Shift [9]. We will start from the test set defined to answer
RQ2. For each video game, two human annotators will group the
segments based on the game context in which they appear. The hu-
man annotators will discuss conflicts aiming at reaching consensus.
Segments on which consensus can not be reached will be discarded,
similarly to RQ2. We will use the ground-truth partition produced
after this step to evaluate the previously-mentioned clustering tech-
niques to answer RQ3 (more on this below). Then, for each cluster
and for each category of issues, we will further cluster segments
according to the specific issue highlighted. We will use the same
process used for building the ground-truth partition defined for
answering RQ3, and we will use such a partition to answer RQ4.

For both the RQs, we will compare the models by using the MoJo
eFfectiveness Measure (MoJoFM) [29], a normalized variant of the
MoJo distance. MoJoFM is computed using the following formula:

𝑀𝑜𝐽𝑜𝐹𝑀 (𝐴, 𝐵) = 100 − ( 𝑚𝑛𝑜 (𝐴, 𝐵)
𝑚𝑎𝑥 (𝑚𝑛𝑜 (∀𝐸𝐴, 𝐵))

× 100)

where 𝑚𝑛𝑜 (𝐴, 𝐵) is the minimum number of Move or Join oper-
ations one needs to perform in order to transform a partition 𝐴

into a different partition 𝐵, and𝑚𝑎𝑥 (𝑚𝑛𝑜 (∀𝐸𝐴, 𝐵) is the maximum
possible distance of any partition 𝐴 from any partition 𝐵. MoJoFM
returns 0 if partition 𝐴 is the farthest partition away from 𝐵; it
returns 100 if 𝐴 is equal to 𝐵.

6.4 Research Method for RQ5
To answer RQ5, we will run a survey with at least five practitioners,
aimed at collecting their opinions on the usefulness of the informa-
tion provided by GELID. We preliminarly acquired the availability
of five professional developers to achieve do this. The survey will
be composed of three steps. First, participants will complete a pre-
questionnaire to acquire basic information. We report the specific
questions we will ask in the top part of Table 2. Second, we will
ask them to freely browse for 15 minutes a web-app containing the
information generated by GELID for a specific video game. To this
aim, we will exploit the third dataset defined in Section 5. Especially,
participants will be able to: (i) view summary information about the
contexts; (ii) browse contexts and view summary information about
the categories of issues affecting them; (iii) browse issue categories
and view summary information about clusters of video segments
regarding specific issues; (iv) browse such clusters and watch video
segments. After this step, participants will answer specific ques-
tions about the perceived usefulness of GELID, as specified in the
bottom part of Table 2. We will report summary statistics about the
responses and qualitatively analyze their comments to also provide
insights about future research directions.

7 LIMITATIONS, CHALLENGES, AND
MITIGATIONS

In this step we summarize the main limitations of our work and
outline the mitigation strategies we use.

Subjectivity of the Manual Analysis. It is possible that the
manually determined labels and partitions used to answer our RQs
are not correct. To mitigate this limitation, all the manual evalua-
tions are performed by two authors, and the results are discussed
to reach consensus.

Evaluation Biases. In the evaluation of GELID, we will explic-
itly select video games with many issues. This could result in a
bias in the evaluation. It might be possible that we conclude that
GELID works, while it works only on problematic games. However,
we believe that GELID is most useful for such a category of video
games

Incomplete Definition of Categorization Labels. The defi-
nition of the labels used in the second step of GELID (i.e., catego-
rization) might be incomplete. It is possible that we do not consider
some relevant categories of issues. To mitigate this limitation, we
relied on a state-of-the-art taxonomy [28].

Ineffectiveness of the Features. A key issue in implementing
GELID consists in defining meaningful features for categorizing
and clustering video segments. We will initially rely on features
previously engineered in a similar context (e.g., categorization and
clustering of mobile app reviews [4, 23]). A different set of features
may lead to different, possibly better, results.

Manual Analysis Effort.We foresee a big amount of manual
analysis to be performed to both (i) build a training set and (ii)
answer our RQs. To address this challenge, we will likely involve
other people in this process (e.g., game players).

8 CONCLUSION
In recent years, there has been a growing interest in video games.
During game development, many bugs go undetected prior to re-
lease because of the difficulty of fully testing all aspects of a video
game. We introduce GELID, a novel approach for detecting anom-
alies in video games from gameplay videos to support developers
by providing them with useful information on how to improve their
games. We presented the plan of our empirical study designed to un-
derstand to what extent GELID can provide meaningful information
to developers.
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