
1

Enhancing Just-In-Time Defect Prediction Models
with Developer-Centric Features

Emanuela Guglielmi, Andrea D’Aguanno, Rocco Oliveto, and Simone Scalabrino
DEVISER @ University of Molise, Italy

Abstract—Ensuring high software quality in development cy-
cles with frequent updates is critical, especially in Agile and
CI/CD environments. Just-In-Time Software Defect Prediction
(JIT-SDP) has emerged as a promising solution for finding
bugs early, as it enables immediate identification of changes
prone to defects. JIT-SPD models based on Machine Learning
focus primarily on project- and change-specific features, such
as number of lines added and number of files modified in the
change. Recent research has started to investigate developer-
related features for defect prediction. However, these studies
overlook information about developers’ work habits and cross-
project activities. In this paper, we try to fill this gap by
introducing a set of developer-centric features for JIT-SDP, which
span through temporal aspects (when do developers usually
make commits?), change-related aspects (how do developers
usually make commits?), and project-related aspects (how are
the contributions distributed among different repositories?). We
conducted an empirical evaluation to understand if such features
allow to improve ML-based JIT-SPD models and evaluated the
importance of developer-centric features on the performance of
the model. Our results show that integrating developer-centric
features improves model performance. We observed a +15.48%
precision and +10.47% recall in a within-project evaluation and
+14.59% precision and even +85.83% recall in cross-project
evaluation.

Index Terms—Just-in-Time Software Defect Prediction, Devel-
oper Centric, Mining software repositories

I. INTRODUCTION

In software system development, maintaining high quality
while keeping up with the frequent iterative changes during
software maintenance and evolution is a crucial challenge
[1]. This becomes especially important in Agile and CI/CD
environments, where changes to the codebase are frequent
and might automatically trigger releases, thus requiring an
immediate evaluation of a given change in terms of quality [2].
In software maintenance and evolution developers frequently
integrate their code into shared repositories, triggering testing
pipelines to detect issues early. In this process, defects— i.e.,
deviations from specifications or expectations — might be
introduced and can cause malfunctions and security issues,
with potentially harmful consequences for end-users. Some
defects may remain latent and surface under specific condi-
tions, leading to system failures [3]. To tackle this problem,
previous work defined approaches to automatically predict
to what extent a given component is defective (Software
Defect Prediction, or SDP in short). SDP aims to automatically
identify potentially defective code early, providing developers
with timely feedback to prevent problems before they impact
the end user [1]. Given a source code artifact (e.g., a file/class

or a function/method), SDP consists in predicting if it is buggy
or non-buggy. In time, SDP research has gained significant
attention, particularly thanks to the advancements in machine
learning (ML) techniques [2], [4]. Traditional approaches
for SDP are based on supervised Machine Learning (ML)
models. Specifically, approaches focus on product-, process-
and developer-related features, such as CK metrics [5], entropy
of changes [6], and scattering [7].

Just-In-Time Software Defect Prediction (JIT-SDP) [8] has
emerged as a more effective application of the concepts behind
SDP. Instead of predicting the faultiness of software artifacts at
a given revision, JIT-SDP models aim at identifying changes
(i.e., commits) that might lead to the introduction of bugs.
CI/CD pipelines could be configured to hold the release of
a new version when possible bug-introducing changes are de-
tected and developers could be forced to review such changes.

Many JIT-SDP techniques have been proposed and eval-
uated in recent years [9]–[12]. Some of them are based on
traditional ML techniques (such as Naive Bayes and Random
Forest) [13], [14], while more recent ones explored the use
of Deep Learning and Large Language Models as well [15]–
[18]. However, recent surveys by Zhao et al. [2] and Alnagi
et al. [4] have shown that the first ones (Random Forest
models, specifically) tend to outperform other methods. These
studies also highlight limitations in current approaches: JIT-
SDP models typically rely on features that are extracted
based on the information available for the specific project at
hand, such as the number of lines added or the number of
the specific change or the number of commits made by the
developer (i.e., their experience). Such project-centric aspects
are certainly important, but neglect the fact that developers
contribute to other projects as well. Developer experience,
habits, and workload distribution might play a crucial role in
error introduction as well [19]–[23]. For instance, if developers
work on many projects in the same period, they may disperse
attention and increase the risk of mistakes, while focusing on
a single project may reduce this risk [24].

Developer-related information are kept into account in SDP
models. Di Nucci et al. [7] introduced features aimed at
capturing developers’ focused activity areas and showed that
they allow to improve existing models. However, these metrics
are constrained to the specific project under analysis, capturing
a narrow view of developer behavior without accounting for
cross-project activity or long-term work patterns. Laudato
et al. [23] recently explored the potential of using developers’
activities to predict the likelihood that they introduce bugs.



2

However, measuring such features requires that developers
use specialized equipment while working, which might not
always be possible or accepted. Nevertheless, to the best of
our knowledge, all the available developer-related features
collected are still project-centric.

In this paper, we aim to provide a complementary point of
view by introducing and evaluating a new set of developer-
centric features for JIT-SDP, i.e., metrics that can be used to
fully characterize developers based on their near-past commits.
The concept behind all such metrics is simple: Given a
commit, we retrieve the activities performed by the developers
in the near-past period (e.g., 2 months) and we extract useful
information from them throughout all the project they worked
on. We identified three categories of aspects of interest: (i)
temporal aspects, which are related to when developers worked
(e.g., did they work during the night or on Sundays?); (ii)
change-related aspects, which capture how typical commits
made by the developer look like (e.g., did they make many
commits?); (iii) project-related aspects, which regard how the
contribution of the developer is spread across multiple projects
(e.g., did they focus on a single project or did they work on
many projects?).

We conducted an empirical study to assess the effectiveness
of our developer-centric features in JIT-SDP. We compared
a model with classic project-centric JIT-SPD features from
the literature and a model that combines such features with
our newly introduced features. We performed such evaluations
both in a within-project and in a cross-project evaluation
scenario. Our results show that integrating developer-centric
features improves model performance. We observed that up
to +15.48% precision can be achieved in a within-project
evaluation and even +85.83% recall and +4.85% AUC in a
cross-project evaluation. We observed that features aimed at
capturing temporal aspects are generally more important than
others. For example, we observed that a higher percentage of
work in the afternoon is associated with a higher buggy rated.

Our findings provide a clear message for future researchers
interested in this field: Developer-related information is im-
portant for predicting bugs, and the context of the project
might be insufficient to fully characterize them. Besides, our
findings pave the way for models that only rely on developer-
specific information to assess the risk that a given developer
will introduce bugs before they start working (Before Time
Defect Prediction), that could help better allocate developers’
time in the future.

II. RELATED WORK

We discuss the related literature focusing on JIT-SDP mod-
els, and developer-related features.

A. JIT-SDP Model

Developing various methods to build JIT-SDP (Just-In-
Time Software Defect Prediction) models is a relevant aspect
already explored in the literature [8], [25]. Mockus et al. [25]
introduced one of the first studies to explore the possibility of
leveraging system changes for detecting software defects.

The authors developed an early supervised model for failure
prediction based on the concept of identifying software defects
by analyzing the changes.

Kamei et al. [8] formalize the concept of “Just-In-Time”
defect prediction, highlighting its distinction from traditional
SDP (Software Defect Prediction) approaches, which typically
predict defects at the code artifact level (e.g., file or package)
[6], [26]–[31]. Instead, JIT-SDP focuses on continuous quality
control, identifying potentially defective changes immediately
after a commit, enabling timely interventions.

As a result of the introduction of JIT-SDP models in the
literature, studies have been introduced to explore various
algorithms in order to improve their accuracy [2], [4]. As
described by Zhao et al. [2] and later by Alnagi et al. [4],
the Random Forest classifier algorithm currently exhibits the
best performance compared to Logistic Regression and Naive
Bayes models in the literature [13], [14]. Fukushima et al.
[32] conducted a study on predicting cross-project defects
with Random Forest models. Their findings showed that model
performance improves significantly when trained on accurately
selected data from projects with similar correlations between
predictors and variables. Kamei et al. [33] confirmed these
findings, also observing that Random Forest ensemble models
excel in cross-project contexts with accurate data, particularly
when historical project data are limited. Tourani et al. [34]
proposed a new JIT-SDP model that integrates traditional
features with software release discussions. The authors show
that the addition of contextual information improves defect
prediction. Recently, Zeng et al. [35], explored how adding
more features to datasets impacts the improvement of JIT-SDP
predictive performance. The results show that it is important
to consider the context of features as adding more features to
datasets does not necessarily lead to improvements.

B. Features in JIT-SDP

The features considered in ML models play a crucial role in
Just-In-Time Defect Prediction by identifying and quantifying
code changes that may introduce defects. The state-of-the-art
features for defect prediction are presented in Table I and are
geared to take into account the main aspects that affect the
life cycle of a software project [2], [8]. As highlighted by
Alnagi et al. [4], commonly used JIT-SDP metrics focus on
aspects like code diffusion, history, modification, developer
activity, and purpose. Diffusion refers to how widely changes
are distributed across different modules or components of the
project. History involves the modification history, including
quantitative and temporal data, as well as the frequency and
extent of past changes. Code modification encompasses actual
changes to the source code, such as additions, deletions,
or rewrites [8], [36]. The Developer aspect focuses on the
individual making the change, particularly their experience
with the specific subsystem. Lastly, the purpose behind the
change is analyzed, such as whether it was made to fix a bug.
In fact, for each change which defines a row within the dataset,
a series of numerical values are measured [37], [38].



3

Feature Description
NS Number of subsystems modified by the change
ND Number of sub-directories modified by the change
NF Number of files modified by the change
Entropy Distribution across the modified files
LA Lines of code added
LD Lines of code deleted
LT Lines of code in total
AGE Average time gap to the last change over files
NUC Number of unique last changes to the files
NDEV Number of developer
EXP Developer experience, i.e. number of changes
REXP Recent developer experience, i.e. weighted by ages
SEXP Developer experience over a subsystem
FIX Whether the change is for fixing a previous defect

TABLE I: Description of the features used in the literature.

Issue Tracking System data and static analysis metrics have
become emerging areas of interest in Just-In-Time Software
Defect Prediction (JIT-SDP). Data from such systems typically
include both textual content and metadata from software
development tools like GitHub Issues, which tracks issue
reports, code reviews, and developer discussions. These data
sources capture rich information on how defects are discussed,
prioritized, and resolved within a project, providing insights
into the development process [34], [39].

Ning Li et al. [41] evaluated state-of-the-art JIT methods
from a software reliability perspective. The authors start
selecting several projects and calculated a set of features to
train 11 of the most commonly used JIT-SDP models. They
focused on two key aspects: the effectiveness of JIT techniques
in preventing early exposed defects and the improvement in
long-term software reliability resulting from these techniques.
The dataset was built entirely on the state-of-the-art features
described in Table I.

In recent years, JIT-SDP studies have incorporated
developer-related metrics to capture human factors associated
with defect introduction [22], [46]. Eyolfson et al. [46] showed
that developers with more experience introduce fewer errors,
while Bird et al. [22] pointed out that strong code ownership
reduces bug rates. Posnett et al. [24] highlighted that devel-
opers focused on specific areas of a system introduce fewer
defects. Di Nucci et al. [7] proposed a model that considers
developers’ focused activity areas, reporting superior results
in defect prediction compared to traditional models. In JIT-
SDP, developer experience metrics—often approximated by
the number of changes a developer has made—have been used
based on the assumption that more experienced developers
are less likely to introduce defects [19]–[21]. However, these
metrics are typically limited to the context of the project at
hand. They capture elements of the developer’s immediate
development process, such as code changes or commit fre-
quency. This is the main difference with our work, in which
we consider the overall near-past history of contribution of a
developer, also in other projects

III. DEFINING AND MINING DEVELOPER-CENTRIC
FEATURES

We discuss in the following the developer-centric features
we devised to capture developer-related information and in-
tegrate them into JIT-SDP models. In particular, we detail
in the following: (i) the set of features and the theoretical
motivation behind them, and (ii) the mining procedure required
for extracting computing them.

A. Developer-centric Features

All the features we devised are meant to be computed based
on the global near-past contribution by the developer. Specifi-
cally, given a developer d, author of the commit ct for which
the JIT-SDP prediction needs to be performed, the features are
computed based on the sequence of commits Cr by the same
author made in all the repositories r ∈ R they work on in the
X days that come before the day in which c is performed. We
discuss the X we adopt for our experiment in the experimental
design. Each commit c ∈ Cr∀r ∈ R is associated to the push
event p(c) that contained it, i.e., the repository synchronization
request between the local repository of the developer and the
central one. Note that each push event contains one or more
commits and has its own creation time (might differ from the
one of the commits it includes).

We identified three categories of features. The first one
regards temporal aspects of the contributions made by the
developer. The second one regards aspects concerning the
specific change performed. Finally, the third one regards
aspects related to the projects modified. We provide a detailed
description of the categories and of the specific features below.
Table II provides an overview the categories and features.

Note that, in the following descriptions, we always exclude
from Cr duplicate commits, i.e., commits with the same ID,
which typically appear when developers first contribute to
forks and then to the original repository.

1) Temporal Aspects: Time related aspects are character-
istics that concern the part of the day and the weekday in
which a developer works. Previous work has shown that such
aspects could be important for predicting the performance of a
developer in a task [23], [46]. Thus, we hypothesize that such
aspects might be useful to characterize a developer in terms
of their work habits.

WD: Distribution of work by day of the week. First, we
want to understand what is the typical working week of d. We
consider this aspect as important based on the assumption that
work performed on some weekdays (e.g., during the weekends,
or even on Fridays [44]) may be correlated with higher defect
rates due to factors such as developer fatigue or busier working
routines. Thus, we compute features aimed at counting the
percentage of near-past contributions made on each weekday.
To do this, we define seven features, one for each weekday
(i.e., WDMon, . . . , WDSun) Given the commit timestamps of
all the near-past commits (c ∈ Cr∀r ∈ R), we count the
the number of times each weekday is represented. Finally, we
normalize the values of all the WD features, so that they are
between 0 and 1 and their sum equals 1.



4

HD: Hourly distribution of commits. The time at which a
developer makes changes to the code can affect the probability
of introducing errors. Working on certain hours, particularly
those associated with fatigue or prolonged work sessions (e.g.,
night hours), may be associated with an increased risk of
introducing errors [45], [46]. To compute those features, we
follow a similar approach as the one described for WD. We
group the working hours into four slots: from 8AM to 2PM
(morning, HDmo), from 2PM to 6PM (afternoon, HDan), from
6PM to 11PM (evening, HDev), and from 11PM to 8AM
(night, HDni). Again, given the commits in Cr, we divide
them among the four slots we identified based on their time
and, then, normalize the values of such features so that they
are between 0 and 1 and their sum is 1.

PT: Time between push event. An extended time interval
between successive push events can suggest that either (i) the
developers’ working activity is lower, which may, in turn,
be a symptom of reduced familiarity with the codebases, or
(ii) the developer is accumulating changes to be pushed at
a later time. In both the cases, we hypothesize that higher
time intervals are associated with a higher risk of introducing
bugs. To compute the PTavg and PTsd features, we trace
each commit c ∈ Cr∀r ∈ R back to its push event p(c).
We then remove duplicate push events. Finally, we sort them
based on the push event time and compute, for each couple
of consecutive push events, the time difference. PTavg is the
mean of such intervals, while PTsd is their standard deviation.

2) Change-related Features: Change-related features allow
to characterize the developer in terms of how and how much
they work. As for the former, we measure the characteristics
of code changes and commit messages. As for the latter, we
aim at measuring the workload of the developer.

WL: Developers’ Workload. A too high workload could
be associated with stress and a higher risk of introducing
faulty changes. Thus, we aim at measuring different facets
of such an aspect. First, we measure the total number of
commits made in the whole period considered, WLtot. Besides
that, we introduce two additional workload measures: The
average workload per day, WLad, which is computed as the
mean number of commits made on each day of the period
considered, and the average workload per working day, WLwd ,
which only considers commits done between Monday and
Friday (it ignores commits done in the weekend). The rationale
is that such commits might indicate actual work made by
developers, while the others might indicate leisure coding
activities which do not necessarily increase the developers’
stress.

WAI: Recent workload increases. An increased workload
in the days leading up to a commit may reflect heightened
developer commitment, which can correlate with increased
stress. So, we aim at computing the ratio between the de-
velopers’ workload in the very recent past and a baseline
workload for the same developer. Here we measure workload
in terms of number of commits. To compute WAI, we divide
the commits c ∈ Cr∀r ∈ R in two sets: Crecent , containing the
commits done in the last week of the period considered, and
Cold , containing the ones dated before. We further divide the
commits in Cold based on the week in which they have been

made and compute the average weekly number of commits.
Finally, we compute WAI as the number of commits in Crecent

and the average weekly number of commits.
Acc: Commit Accumulation. Some developers tend to

synchronize their local repository with the central one as soon
as possible, while others might prefer to accumulate several
changes before doing that. While we conjecture such a piece of
information allows to better characterize the developer, we are
agnostic in terms of expectation of what strategy is more prone
to introduce bugs. It could be that accumulating more commits
indicates that the developer is more meticulous and wants
to provide a good solution before synchronizing. Conversely,
commit accumulation may indicate a developer who does not
always pay attention to share their changes. To compute Acc,
we trace each commit c ∈ Cr∀r ∈ R back to the push event
in which it is contained (p(c)), remove duplicates, and define
the set of push events P . Finally, we compute Acc as |Cr|

|P | .
Mod: Modifications in the Commit. Extensive code mod-

ifications, such as adding or removing a large number of lines
(LOC) or modifying multiple files, can increase the likelihood
of introducing defects by adding complexity to a software
component. These changes can also complicate debugging and
code review, making it more difficult to detect problems. To
capture these issues, we defined four metrics: ModF , ModL+,
ModL−, and ModLF . Such metrics are inspired by state-of-the-
art JIT-SPD metrics that aim at measuring the size of a given
change. In this case, however, we perform the measure on the
near-past commits. Specifically, ModF computes the average
number of files modified per commit, ModL+ and ModL−
measure the average number of lines added and removed to
a commit, respectively, while ModLFmeasures the average
number of modified lines (either added or removed) for each
file.

MCML: Average length of commit messages Detailed
commit messages should be preferred over short and shallow
ones. Thus, writing more detailed commit messages might
indicate that a developer is more meticulous. To measure
to what extent the developer tends to write detailed commit
messages, we compute the average commit message length
for all the commits c ∈ Cr∀r ∈ R. Specifically, we count
the number of characters by excluding whitespaces to have
a (even though slightly) more precise measure of the actual
content of the messages.

3) Project-related Features: We conjecture that the repos-
itories on which a developer works tell much about their
working habits. If a developer works on several projects at
the same time, it is more likely that they forget important
details and thus introduce bugs.

#Repos: Number of Repositories. First of all, we want
to estimate the number of projects on which the developer
worked in the near-past period. We conjecture that the higher
this number, the more likely it is that they introduce bugs. To
measure #Repos, we simply count the number of repositories
R the developer is working on. Note that this does not neces-
sarily matches the number of projects since a project might be
contained in several repositories (e.g., backend and frontend),
but we believe it provides a sufficiently good estimate.



5

LOF: Developers’ Focus on a Project While a developer
might work on several projects, it is possible that they put most
of the effort on a few of them. To better estimate to what
extent the developer is focusing on a project, we compute
two focus metrics, i.e., LOF (Lack of Focus) and LOFN

(Normalized Focus). Such metrics are based on the concept
of information entropy, which has been previously adopted in
defect prediction research [6]. We associate each repository
r ∈ R with the number of commits made by the developer in
it, |Cr|. Then, we compute LOF using the following formula:

LOF =
∑
r∈R

|Cr|
T

log2(
|Cr|
T

)

where T is the total number of commits, computed as
T =

∑
r∈R |Cr|. A high LOF suggests that the developer

distributed their time evenly across the projects, which could
lead to a dispersion of focus and increase the likelihood
of errors due to frequent context switches. In contrast, low
entropy implies that the developer concentrates on a smaller
number of projects, reducing the risk of errors by maintaining
focus and continuity. We introduce LOFN as a normalized
version of LOF, computed as LOF multiplied by T (total
number of commits). Let us consider two developers, A and
B. A contributed to two repositories, with 100 commits each,
while B contributed to two repositories as well, but with 2
commits each. LOF would be 1 for both, but the focus of A
is probably lower than the focus of B because A made more
changes (and, possibly, more switches between the projects).
In the example, LOFN would be 100 for A and 4 for B.

#CS: Number of Context Switches. Let us consider two
scenarios. In the first one, a developer worked on three projects
in a sequential way (first they worked on P1, then on P2, and
then on P3). In the second scenario, instead, the developer
alternates changes to a project with changes to another project.
The LOF and LOFN would be the same in both scenarios
if the number of commits made for the three projects is the
same. However, we conjecture that the second scenario is
more problematic since it is more likely that the developer
might confuse information from more projects and introduce
errors. To capture this phenomenon, we introduce an addi-
tional metric specifically aimed at measuring the number of
context switches, #CS. Given the ordered sequence of commits
c ∈ Cr∀r ∈ R, we count the number of consecutive couples
of commits, (ci, ci+1) that belong to different repositories.

B. Mining Developer-Centric Features

Given a commit c for which we want to predict its possible
faultiness, we first extract the commit author email, that
we use as an author identifier. Then, we rely on GitHub
Archive [47] for identifying all the contributions made by
a developer throughout different projects. GitHub Archive
allows to download all the events happened on GitHub at a
given date/hour. Thus, given the commit date of c, ideally, it
could be possible to mine all the events happened between the
time of c and the X past days to define the near-past window
used to compute the features (we explain shortly below how).
Note that, however, this operation is computationally intensive:

Feature Description

Â

HD Hourly distribution of commits created
WD Distribution of work by weekday
PTavg Average time between push events
PTsd Standard deviation of time between push events

å

WLtot Total workload of the developer
WLad Average workload per day
WLwd Average workload per working day
WAI Workload increase in the last week
Acc Average number of commits per push event
ModF Average number of files modified in the period
ModL Average number of LOCs added (+) or removed (-)
ModLF Average number of modified lines per file
MCML Average length of commit messages

}

#Repos Number of repos to which it contributed in a given period
LOF Percentage of time devoted to one project compared to others
LOFN Weighted entropy on commits
#CS Number of times a developer switched projects

TABLE II: Developer-centric temporal (Â), change-related
(å), and project-related features (}).

It would be necessary to re-compute the window after every
commit to re-compute the features. To avoid this, we decided
to use a fixed near-past window for each month. Given two
commits c1 and c2 of the same developer in the same month
but on different days, the near-past window of both will be
the same.

Out of all the events in the near-past window, we consider
only the push events, which contain, among other data, the
repository ID and the IDs and messages of the commits pushed
in the event. Such information are not sufficient to compute
some metrics (e.g., temporal ones) because we do not have
the commit times. To acquire the missing information, we use
the GitHub APIs.

IV. EMPIRICAL STUDY DESIGN

The goal of our study is to assess to what extent our
developer-centric features improve the effectiveness of a JIT-
SPD model based on ML techniques. We aim at answering
the following research questions:

• RQ1: To what extent do developer-centric features im-
prove the effectiveness of JIT-SPD in a whitin-project
evaluation?

• RQ2: To what extent do developer-centric features im-
prove the effectiveness of JIT-SPD in a cross-project
evaluation?

• RQ3: What developer-centric features are important?

A. Study Context

In this section, we report how we built the datasets used to
answer all our RQs.

The datasets we used in our study are based on the datasets
released by Tian et al. [41]. The authors built a dataset for
each of the 18 projects they considered. Each dataset contains
the commit of the projects, and each commit is characterized
by several state-of-the-art JIT-SPD metrics and annotated with
a buggy or non-buggy label.



6

Project Name total commit filtred commit buggy commits
ActiveMQ 10,236 1,722 85
Ant* 14,539 1,124 0
Camel 38,909 18,381 830
Derby* 8,268 195 2
Geronimo* 13,137 0 0
HBase 16,726 5,493 854
JMeter 16,341 2,623 35
LOG4J2 10,695 6,086 242
LUCENE 32,230 8,056 184
OpenJPA* 4,893 173 2

TABLE III: Number of commits for each project in the original
dataset. * indicates the project that we excluded for which we
did not have a sufficient number of commits.

As a first step, we removed from each dataset all commits
for which we could not compute developer-oriented features.
Specifically, we excluded the commits (i) made before March
2015 (GitHub Archive provide data in a different format before
such a date), and (ii) no longer available in the repository at
the time we conducted our study. Table III reports the number
of commits for each project in the original dataset and the one
we considered in our dataset. We excluded projects for which
we did not have a sufficient number of commits. As a result,
we considered six projects. For each valid commit of such
projects, we used the previously-defined approach to compute
the developer-centric features for each project.

In the end, we considered a total of 42,361 commits, of
which only 2,230 have a “buggy” label (∼5.6%).

B. Experimental procedure
To address the first two research questions, we compared

two models. One containing all the features (both state-of-the-
art JIT-SPD features and our new developer-centric features —
the new model) and one containing only state-of-the-art fea-
tures (the baseline). We trained and tested three different ML
classification algorithms. Random Forest [48], (ii) ADABoost
+ LMT [49], [50], and (iii) Naive Bayes [51]. We used the
implementations and default configurations available in Weka
[52]. We chose them because Zhao et al. [2] identified these
models as top performers in Just-In-Time Software Defect
Prediction tasks.

For both the models, we run a preprocessing step before
starting the training. First, to reduce the number of features,
we adopt attribute selection using the Info Gain algorithm
[53]. Specifically, we filter out features that provide 0 gain.
The datasets we considered are highly unbalanced: As it is
reasonable to expect, the vast majority of changes (94.4%
throughout all the datasets) do not introduce bugs. Thus,
before training each model, we use SMOTE (Synthetic Minor-
ity Over-sampling Technique) [54], an oversampling method
which creates synthetic samples from the minority class. We
only generate synthetic instances for the training set while
leaving the test set intact.

We are mainly interested in assessing the ability of the
model to find bugs. Thus, we compute and report recall, preci-
sion, and F1-score (the harmonic mean of precision and recall)

for the buggy label. We also report the AUC (Area Under
the ROC curve [55]), which is independent from the class
and globally evaluates the worth of the classifier: An AUC of
0.5 indicates a model that has no capability of distinguishing
between the two classes. A perfect model, which has no false
positives and no false negatives, has, instead, an AUC = 1.0.

To answer RQ1, we used a 10-fold cross validation on
each dataset independently (within-project evaluation). Such
a validation consists of randomly dividing the dataset into ten
equally sized folds and using, in turn, nine folds for training
and one for testing. To answer RQ2, instead, we considered,
in turn, the whole dataset referred to the project under test as
test set, and the union of all the datasets referred to the other
projects as training set (cross-project evaluation).

Finally, to answer RQ3, we analyze the developer-centric
features selected by the Info Gain algorithm [53] for each
project in both the evaluation scenarios. Specifically, we count
how many times each features is selected and report them.
When several features are available for capturing the same
aspect, we count them only once (if at least one of them is
selected). An example is “WD”, which computes the distri-
bution of work by day of the week. There are seven features
for measuring such an aspect (one for each day). If at least
one of them is selected for a given project, we consider “WD”
important for that project.

V. EMPIRICAL STUDY RESULTS

This section reports the results of the three research ques-
tions formulated in Section IV.

A. RQ1: Within-Project Evaluation

Table IV shows the comparison between the two approaches
(combined, which includes developer-centric features, and the
state-of-the-art baseline) for the three ML algorithms.

First, we observed slightly mixed results for the Naive
Bayes algorithm in terms of the comparison between the two
approaches (i.e., combined and baseline). Even though the
combined model achieves slightly better results in terms of
recall (+5.6%) and AUC (+0.5%), it does that at the cost of a
slightly lower precision (-3.6%). In general, the models based
on Naive Bayes exhibit a clearly lower precision than the other
models (based on AdaBoostM1+LMT and RandomForest).
Still, the AUC values show a relatively high discriminative
ability, with an average of 0.736 for the combined approach.

On the other hand, we observed that for the other ML
algorithms (AdaBoostM1+LMT and RandomForest) the model
trained on the combined set of features reported sensible
improvements in terms of all the metrics for all the projects,
except for one. More specifically, for the AdaBoostM1+LMT
model we observed an average improvement for all the
metrics (+20.8% precision, +19.5% recall, +20.4% F1-score,
and +2.5% AUC). We obtained the best overall results with
the Random Forest algorithm. Also for this algorithm, we
observed that the combined model achieves better results than
the baseline for all the project, with the same exception we had
for the other two algorithm. Also, the baseline model achieves
higher recall only for one of the projects (Lucene).



7

Naive Bayes
Combined Baseline

Project Precision Recall F1 AUC Precision Recall F1 AUC
ActiveMQ 0.067 0.918 0.125 0.780 0.062 0.918 0.115 0.755
Camel 0.130 0.584 0.212 0.771 0.148 0.434 0.221 0.776
HBase 0.461 0.278 0.346 0.762 0.464 0.262 0.335 0.779
Jmeter 0.014 0.886 0.028 0.616 0.014 0.886 0.028 0.616
Log4j2 0.049 0.806 0.093 0.693 0.047 0.847 0.089 0.662
Lucene 0.079 0.587 0.139 0.794 0.092 0.500 0.155 0.801
Mean 0.133 0.677 0.157 0.736 0.138 0.641 0.157 0.732

AdaBoostM1+LMT
Combined Baseline

Project Precision Recall F1 AUC Precision Recall F1 AUC
ActiveMQ 0.355 0.447 0.396 0.847 0.301 0.329 0.315 0.827
Camel 0.422 0.457 0.439 0.873 0.364 0.447 0.401 0.863
HBase 0.413 0.467 0.438 0.766 0.396 0.429 0.412 0.753
Jmeter 0.143 0.229 0.176 0.700 0.143 0.229 0.176 0.700
Log4j2 0.475 0.579 0.521 0.900 0.288 0.372 0.324 0.839
Lucene 0.177 0.283 0.218 0.832 0.151 0.250 0.189 0.817

Mean 0.331 0.410 0.365 0.820 0.274 0.343 0.303 0.800

Random Forest
Combined Baseline

Project Precision Recall F1 AUC Precision Recall F1 AUC
ActiveMQ 0.352 0.435 0.389 0.884 0.351 0.400 0.374 0.863
Camel 0.416 0.496 0.453 0.909 0.402 0.495 0.444 0.895
HBase 0.493 0.468 0.480 0.813 0.464 0.424 0.443 0.800
Jmeter 0.127 0.200 0.156 0.755 0.127 0.200 0.156 0.755
Log4j2 0.562 0.545 0.553 0.910 0.350 0.355 0.352 0.870
Lucene 0.196 0.261 0.224 0.867 0.168 0.304 0.216 0.848

Mean 0.358 0.401 0.376 0.856 0.310 0.363 0.331 0.839

TABLE IV: RQ1: Comparison in a within-project evaluation.

On average, again, we observed a consistent improvement
in terms of all the metrics we considered (+15.5% precision,
+10.5% recall, +13.6% F1-score, and +2.0% AUC).

As previously mentioned, there is a project (Jmeter) for
which both the approaches achieve exactly the same results.
This happens because the feature selection algorithm selected
none of the developer-centric metrics for such a project (i.e.,
the same sets of metrics are adopted for the combined and
baseline models). We report some possible motivations in the
analysis performed in RQ3.

Answer to RQ1. The integration of developer-centered
features consistently enhances the performance of the ML
models we studied. For the best-performing algorithm (Ran-
dom Forest) we obtained substantial improvements (+15.5%
precision, +10.5% recall, +13.6% F1-score, and +2.0%
AUC).

B. RQ2: Cross-Project Evaluation

Table V shows the comparison between the combined
approach (which includes developer-centric features) and the
state-of-the-art baseline for the three ML algorithms in a cross-
project evaluation.

As for Naive Bayes, we observed, again, mixed results.
Integrating developer-centric metrics generally has a negative
effect on such an ML algorithm in terms of precision (-
46.3%), F1 (-24.3%), and AUC (-10.1%). On the other hand,
we observed that the combined model achieves a drastically
higher recall for all the projects except for one (+98%).

Also for the cross-project evaluation, the results obtained
with AdaBoostM1+LMT and Random Forest are positive

Naive Bayes
Combined Baseline

Project Precision Recall F1 AUC Precision Recall F1 AUC
ActiveMQ 0.169 0.388 0.236 0.763 0.173 0.282 0.214 0.783
Camel 0.056 0.818 0.105 0.653 0.144 0.337 0.202 0.783
HBase 0.163 0.856 0.274 0.671 0.469 0.379 0.420 0.789
Jmeter 0.047 0.143 0.070 0.653 0.054 0.167 0.081 0.744
Log4J2 0.063 0.277 0.102 0.525 0.065 0.196 0.098 0.621
Lucene 0.026 0.614 0.050 0.602 0.066 0.200 0.100 0.624
Mean 0.087 0.516 0.140 0.645 0.162 0.260 0.186 0.724

AdaBoostM1 + LMT
Combined Baseline

Project Precision Recall F1 AUC Precision Recall F1 AUC
ActiveMQ 0.240 0.294 0.265 0.796 0.157 0.224 0.184 0.745
Camel 0.142 0.208 0.169 0.730 0.132 0.128 0.130 0.691
HBase 0.397 0.199 0.265 0.706 0.427 0.170 0.243 0.706
Jmeter 0.024 0.086 0.038 0.658 0.056 0.144 0.080 0.640
Log4J2 0.103 0.202 0.136 0.632 0.096 0.140 0.114 0.655
Lucene 0.070 0.522 0.123 0.798 0.087 0.132 0.105 0.615

Mean 0.163 0.252 0.166 0.720 0.159 0.156 0.143 0.675

Random Forest
Combined Baseline

Project Precision Recall F1 AUC Precision Recall F1 AUC
ActiveMQ 0.301 0.294 0.298 0.849 0.228 0.212 0.220 0.795
Camel 0.191 0.153 0.170 0.764 0.186 0.124 0.149 0.727
HBase 0.530 0.189 0.278 0.774 0.500 0.144 0.224 0.768
Jmeter 0.051 0.057 0.054 0.652 0.043 0.078 0.055 0.722
Log4J2 0.098 0.182 0.128 0.659 0.072 0.100 0.084 0.658
Lucene 0.099 0.543 0.167 0.846 0.080 0.104 0.091 0.662

Mean 0.212 0.236 0.183 0.757 0.185 0.127 0.137 0.722

TABLE V: RQ2: Comparison in a cross-project evaluation.

for the combined model. The developer-centric features, on
average, allow to substantially improve precision (+2.5%
and +14.6%, respectively), recall (+61.5% and +85.8%), F1
(+16.1% and +33.6%), and AUC (+6.7% and +4.8%). This
results are consistent throughout the projects, with the only
exception of one of them (again, Jmeter).

The best overall results for the combined features can be
achieved with Random Forest, while, this time, the best results
for the baseline features is obtained with the Naive Bayes
method. When comparing such models, the combined model
still allows to achieve better results in terms of precision
(+30.9%) and AUC (+5.6%), at the cost of a slightly reduced
recall and F1 score (-9.2% and -1.6%, respectively).

As for the Jmeter project, which constitutes an exception
in this evaluation as well. Again, we report some possible
motivations in the analysis performed in RQ3.

Answer to RQ2. Developer-centric features allow to obtain
the JIT-SPD model with the highest average discriminative
power (AUC = 0.757 with Random Forest), which also
achieves higher precision than the best baseline model
(+30.9% with Naive Bayes). However, such a model suffers
from slightly lower recall and F1 score.

C. RQ3: Feature Importance

Table VI shows the prevalence of developer-centric features
in both evaluations. It can be observed that a higher number
of developers involved in a project appears to be associated
with a higher percentage of selected developer-centric features
(τ = 0.33).



8

Project % Developer-Centric Features # Authors
ActiveMQ 33.0% 102
Camel 68.0% 738
Hbase 20.0% 443
Jmeter 0.0% 24
Log4j2 70.0% 103
Lucene 61.2% 204

TABLE VI: Prevalence of developer-centric features selected
for each project in the within project evaluation, alongside the
number of unique contributors.

For example, in the model for the Camel project (738
contributors), 68% of the features are developer-centric, while
even 70% of developer-centric metrics constitute the features
for the model built for Log4j2 (103 contributors). It is worth
noting that the results of RQ1 show that the combined models
for such projects achieve the highest AUC scores (> 0.9). This
suggests that developer-centric features play an important role
in JIT-SDP.

On the other hand, as previously noted in RQ1 and RQ2,
we can observe that out of the six projects analyzed, the only
one that did not use any of our features was Jmeter. This is not
only the smallest dataset in our sample, but also the one that
contains the lowest number of contributors (only 24). This
result indicates that developer-centric metrics might mostly
benefit projects with a higher number of contributors. This
result is quite expected: If a few developers work on a project,
studying their peculiarities does help the model characterize
them. When several developers are working on a project,
instead, the model could find out interesting relationships
between the data and the probability of introducing bugs (like
the ones we discuss below).

Table VII shows that all added developer-centric features
were selected at least once, indicating that each macro-
category contains informative features. However, some fea-
tures appear to be more important than others. We discuss
below the further analyses we conducted based on the cate-
gories of features.

Temporal Features. Metrics concerning the hourly and
daily distribution of a developer’s work appear to be very
important. As for the former, we report in Fig. 1 and Fig. 2 the
distribution of the percentage of time the developer worked in
the morning (between 8AM and 2PM) and in the afternoon
(between 2PM and 6PM), respectively, divided by the two
classes. It is clear that having worked mainly in the morning
in the near past is associated with a lower risk of introducing
bugs, while having worked in the afternoon is associated with
a higher risk of making buggy changes. This aligns with
literature in other field, e.g., medicine [56], [57].

Change-related Features. The most informative feature is
MCML, which computes the Mean Commit Message Length.
This finding aligns with what Zhao et al. [2] observed. The
authors highlighted that features related to change messages
are among the most commonly used and informative in
training a JIT-SDP model. However, it is important to note
a key difference here.

Zhao et al. [2] referred to the specific commit message in
the code changes that aims at being predicted. On the other
hand, MCML captures the commit message writing habits of
the developers, even if in a shallow way (i.e., it does not
take into account the actual content of the message). Among
the features related to commit content, another one frequently
selected is WLad, which measures the number of commits of
the author in the near past. Fig. 3 reports a comparison of
the distribution of WLad for the two classes (buggy and non-
buggy). While the median value remains nearly unchanged,
we observe that buggy commits tend to come from authors
with lower variance in the number of commits. This might
be due to two aspects. First, developers wrote longer commit
messages in the near past are used to do this, which indicates
that they are more meticulous and, thus, have lower risks
of introducing bugs. Second, developers that in the near-past
wrote less accurate (thus shorter) commit messages could
have done that because they did not have enough time (e.g.,
increased working pressure) and, thus, this causes a higher risk
of introducing errors. Conversely, it is worth noting that the
total number of commits made by a developer in the near-past
is selected for only one project, while it is marked as irrelevant
for most of the others, even in the cross-project evaluation, for
which almost all developer-centric are usually kept.

Project-related Features. Both LOF (i.e., how focused the
developer has been on a single project) and #Repos (i.e., num-
ber of repositores to which the developer contributed) appear
to be relevant. However, when studying the distributions, we
did not find as clear difference between the buggy and non-
buggy classes as the ones observed for the other metrics. Thus,
we do not report the boxplot for such variables. This likely
means that, while such metrics matter, they are probably only
relevant if combined with other metrics.

Answer to RQ3. Developer-centric metrics are more useful
for projects with more developers. The working hour/day
distribution, the average commit message length, the fo-
cus, and the number of repositories to which a developer
contributed appear to be the most crucial developer-centric
petrics.

VI. DISCUSSION AND IMPLICATIONS

Our empirical evidence provides a clear message:
Developer-related information are important for predicting
the introduction of defects. While we tested this for feature-
based model, such a theory can easily be extended to other
more advanced models as well. Indeed, recent work has started
to explore the use of Deep-Learning (DL) [15] and Large
Language Models (LLMs) [18] for JIT-SDP. Still, considering
developer-related information in such models is trickier since
they are mostly able to treat text (and the more complex
features that can be extracted from it) rather than simpler
numeric features like the ones we introduced. It would be
interesting to explore the integration of such information in
DL-based models and LLMs. For example, as for the latter,
introducing examples of previous commits made by the same
author could give the model having more context.



9

Feature Description #Projects (WP) #Projects (CP)

Â

HD Hourly distribution of commits created 4/6 6/6
WD Distribution of work by weekday 4/6 6/6
PTsd Standard deviation of time between push events 3/6 6/6
PTavg Average time between push events 3/6 5/6

å

MCML Average length of commit messages 5/6 6/6
WLad Average workload per day 3/6 6/6
Acc Average number of commits per push event 3/6 6/6
ModF Average number of files modified in the period 3/6 6/6
ModL+ Average number of added LOCs 3/6 6/6
ModL− Average number of removed LOCs 3/6 6/6
WLwd Average workload per working day 2/6 5/6
WAI Workload increase in the last week 2/6 5/6
ModLF Average number of modified lines per file 2/6 5/6
WLtot Total workload of the developer 1/6 3/6

}

#Repos Number of repositories to which it contributed in a given period 4/6 6/6
LOF Percentage of time devoted to one project compared to others 4/6 6/6
#CS Project transitions, how many times project changes 3/6 6/6
LOFN Weighted entropy on commits 3/6 5/6

TABLE VII: Number of times each temporal (Â), change-related (å), and project-related (}) feature is selected in both
evaluations. We report in boldface the metrics that are selected in more than half the considered projects in both evaluations.

Fig. 1: Distribution of HDmo (morning). Fig. 2: Distribution of HDan (afternoon). Fig. 3: Distribution of WLad.

The developer-centric metrics we considered aim at char-
acterizing the behavior of a given developer in the near-
past. A clear avenue for improvement is constituted by the
introduction of features aimed at capturing the long-term be-
havior of developers and spotting any changes in the behavior.
For example, if developers started writing shorter commit
messages in the near-past, but they are used to write more
detailed messages, it might mean that their workload increased
and, thus, there might be a higher risk of introducing bugs.
The same is true for temporal features: If a developer changed
their circadian rhythm and started working in the night, it is
possible that the risk of introducing bug increases. Similarly,
information regarding the specific commit at hand can be
related to the near-past or long-term behavior of the developer.
For example, if a developer never works on Sundays and a
specific commit is made on such a weekday, it might more
likely introduce bugs.

Our results have implications for practitioners as well.
First, developers should pay attention to the some “bad”
habits we spotlighted (i.e., writing shorter commit messages

or working late), which might be associated to a higher risk
of introducing defects. Since our features do not rely on the
specific commit, but only on the past activity of the developer,
a model containing only developer-centric features could be
experimented and used before developers start working on a
task (Before Time Defect Prediction). The practical suggestion
that such a model could give is, for example, to rest before
writing code or before making a commit, like Advanced Driver
Assistance Systems (ADAS) alert the car driver when they
detect fatigue.

VII. THREATS TO VALIDITY

Threats to construct validity mainly pertain the selection
of developer-centric features and their impact on Just-In-
Time Software Defect Prediction (JIT-SDP) performance. We
introduce specific metrics related to commit frequency and
message length to represent developers’ behavior. However,
these metrics may not fully capture all relevant aspects of
developers’ activities, potentially leading to the incomplete
interpretations of a developer’s impact on defect introduction.



10

Another limitation of our approach is that it does not take
into consideration the different accounts that may belong to the
same developer. This is a well-known problem in the literature
[?]. As a result, this limitation could lead to incomplete
representations of developers’ behavior and work patterns.

Threats to internal validity mainly concern the procedure
used to collect and analyze data in our experiment. First, we
only focused on a subset of commits available for the projects
we studied (from March 2015) since the format for GitHub
Archive changed on that date. A broader analysis on the whole
set of commits could have led to different results. However,
we believe that this thread does not affect the main result
of our analysis, i.e., that developer-centric metrics matter for
predicting the bug-proneness of a commit. Besides, we relied
on Info Gain [53] for selecting attributes in our experiment.
This method, like any attribute selection method, might not
select the best set of features, but a sub-optimal one. We used
the default parameters of the classifiers as provided by the
Weka [52]. As a result, it could be that none of the developer-
centric metrics we considered is actually relevant. Still, we
obtained consistent results among within different projects and
evaluations (within-project and cross-project). This increases
our confidence in our main conclusion — developer-centric
features matter.

Threats to external validity concern the generalizability
of the results to other contexts. This dataset we adopted is
limited to 10 projects, eventually narrowed down to 6 because
of the low number of recent contributions in four of them. The
analyzed projects might be representative of the broad range
of software projects available. It is worth noting, however,
that our study considered the commits from a total of 1,614
developers.

VIII. CONCLUSION AND FUTURE WORK

In the last decade, Just-In-Time Software Defect Prediction
(JIT-SDP) models have proven to be valuable tools for iden-
tifying potential defects in real-time when integrated within
software development pipelines. Existing models, however,
primarily rely metrics that can be computed taking into ac-
count the immediate context of the project at hand, neglecting
developer-related aspects. In this paper, our studied to what ex-
tent integrating developer-centric metrics into JIT-SDP models
allows to improve the accuracy of existing models. Our results
clearly show that, from many perspectives, developer-centric
features are important for predicting bugs. Indeed, a model
that combines developer-centric features with state-of-the-art
features generally achieves higher precision, recall, F1, and
AUC. This effect is even more clear in projects with many
developers. Among the introduced features, those related to the
distribution of the developers’ working hours and daily activity
had a particularly strong impact. Our results support the idea
that developer-centric features provide meaningful insights
into defect-introducing behaviors, improving the accuracy of
the JIT-SDP model. Our future research agenda includes the
definition of more developer-centric metrics that consider both
the long-term past of the developers’ contributions and the
relationship between the characteristics of the specific commit
and the general behavior of the developer.

IX. DATA AVAILABILITY

We release the scripts we used to compute the developer-
centric metrics and to run the experiment, the datasets, and
the data analysis scripts in our replication package [58].

ACKNOWLEDGMENTS

This work has been supported by the European Union -
NextGenerationEU through the Italian Ministry of University
and Research, Projects PRIN 2022 “DevProDev: Profiling
Software Developers for Developer-Centered Recommender
Systems”, grant n. 2022S49T4W, CUP: H53D23003610001.

REFERENCES

[1] Y. Tian, J. Tian, and N. Li, “Reliability assessment and prediction with
testing efficiency growth for open source software,” in International
Conference on Software Engineering and Data Engineering, SEDE
2017, vol. 2017. ACM, 2017, pp. 72–83.

[2] Y. Zhao, K. Damevski, and H. Chen, “A systematic survey of just-in-
time software defect prediction,” ACM Comput. Surv., vol. 55, no. 10,
2023.

[3] G. Canfora and A. Cimitile, “Software maintenance,” in Handbook of
Software Engineering and Knowledge Engineering: Volume I: Funda-
mentals. World Scientific, 2001, pp. 91–120.

[4] E. Alnagi and M. Azzeh, “Just-in-time software defect prediction tech-
niques: A survey,” in 2024 15th International Conference on Information
and Communication Systems (ICICS), 2024, pp. 1–6.

[5] V. R. Basili, L. C. Briand, and W. L. Melo, “A validation of object-
oriented design metrics as quality indicators,” IEEE Transactions on
software engineering, vol. 22, no. 10, pp. 751–761, 1996.

[6] A. E. Hassan, “Predicting faults using the complexity of code changes,”
in 2009 IEEE 31st International Conference on Software Engineering,
2009, pp. 78–88.

[7] D. Di Nucci, F. Palomba, G. De Rosa, G. Bavota, R. Oliveto, and
A. De Lucia, “A developer centered bug prediction model,” IEEE
Transactions on Software Engineering, vol. 44, no. 1, pp. 5–24, Jan
2018.

[8] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha,
and N. Ubayashi, “A large-scale empirical study of just-in-time quality
assurance,” Software Engineering, IEEE Transactions on, vol. 39, pp.
757–773, 06 2013.

[9] ——, “A large-scale empirical study of just-in-time quality assurance,”
IEEE Transactions on Software Engineering, vol. 39, no. 6, pp. 757–773,
2012.

[10] Y. Yang, Y. Zhou, J. Liu, Y. Zhao, H. Lu, L. Xu, B. Xu, and H. Leung,
“Effort-aware just-in-time defect prediction: simple unsupervised models
could be better than supervised models,” in Proceedings of the 2016 24th
ACM SIGSOFT international symposium on foundations of software
engineering, 2016, pp. 157–168.

[11] W. Fu and T. Menzies, “Revisiting unsupervised learning for defect pre-
diction,” in Proceedings of the 2017 11th joint meeting on foundations
of software engineering, 2017, pp. 72–83.

[12] Q. Huang, X. Xia, and D. Lo, “Revisiting supervised and unsupervised
models for effort-aware just-in-time defect prediction,” Empirical Soft-
ware Engineering, vol. 24, pp. 2823–2862, 2019.

[13] R. Duan, H. Xu, Y. Fan, and M. Yan, “The impact of duplicate changes
on just-in-time defect prediction,” IEEE Transactions on Reliability,
vol. 71, no. 3, pp. 1294–1308, Sep. 2022.

[14] Y. Fan, X. Xia, D. A. da Costa, D. Lo, A. E. Hassan, and S. Li, “The
impact of mislabeled changes by szz on just-in-time defect prediction,”
IEEE Transactions on Software Engineering, vol. 47, no. 8, pp. 1559–
1586, Aug 2021.

[15] Z. Zeng, Y. Zhang, H. Zhang, and L. Zhang, “Deep just-in-time defect
prediction: how far are we?” in Proceedings of the 30th ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2021, pp.
427–438.

[16] J. Gesi, J. Li, and I. Ahmed, “An empirical examination of the impact
of bias on just-in-time defect prediction,” in Proceedings of the 15th
ACM/IEEE international symposium on empirical software engineering
and measurement (ESEM), 2021, pp. 1–12.

[17] T. Hoang, H. J. Kang, D. Lo, and J. Lawall, “Cc2vec: Distributed
representations of code changes,” in Proceedings of the ACM/IEEE 42nd
international conference on software engineering, 2020, pp. 518–529.



11

[18] H. Wang, Z. Gao, X. Hu, D. Lo, J. Grundy, and X. Wang, “Just-in-
time todo-missed commits detection,” IEEE Transactions on Software
Engineering, 2024.

[19] Y. Yang, Y. Zhou, J. Liu, Y. Zhao, H. Lu, L. Xu, B. Xu, and H. Leung,
“Effort-aware just-in-time defect prediction: simple unsupervised models
could be better than supervised models,” in Proceedings of the 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, 11 2016, pp. 157–168.

[20] S. McIntosh and Y. Kamei, “Are fix-inducing changes a moving tar-
get? a longitudinal case study of just-in-time defect prediction,” IEEE
Transactions on Software Engineering, vol. 44, no. 5, pp. 412–428, May
2018.

[21] L. Pascarella, F. Palomba, and A. Bacchelli, “Fine-grained just-in-time
defect prediction,” Journal of Systems and Software, vol. 150, pp. 22–36,
2019.

[22] C. Bird, N. Nagappan, B. Murphy, H. Gall, and P. Devanbu, “Don’t touch
my code! examining the effects of ownership on software quality,” in
Proceedings of the 19th ACM SIGSOFT Symposium on Foundations of
Software Engineering, 09 2011, pp. 4–14.

[23] G. Laudato, S. Scalabrino, N. Novielli, F. Lanubile, and R. Oliveto,
“Predicting bugs by monitoring developers during task execution,” in
2023 IEEE/ACM 45th International Conference on Software Engineer-
ing (ICSE). IEEE, 2023, pp. 1–13.

[24] D. Posnett, R. D’Souza, P. Devanbu, and V. Filkov, “Dual ecological
measures of focus in software development,” in Proceedings of the 2013
International Conference on Software Engineering, ser. ICSE ’13. IEEE
Press, 2013, p. 452–461.

[25] A. Mockus and D. Weiss, “Predicting risk of software changes,” Bell
Labs Technical Journal, vol. 5, pp. 169–180, 06 2002.

[26] T. Gyimóthy, R. Ferenc, and I. Siket, “Empirical validation of object-
oriented metrics on open source software for fault prediction,” Software
Engineering, IEEE Transactions on, vol. 31, pp. 897– 910, 11 2005.

[27] P. L. Li, J. Herbsleb, M. Shaw, and B. Robinson, “Experiences and re-
sults from initiating field defect prediction and product test prioritization
efforts at abb inc.” in Proceedings of the 28th International Conference
on Software Engineering. ACM, 2006, p. 413–422.

[28] J. C. Munson and T. M. Khoshgoftaar, “The detection of fault-prone
programs,” IEEE Trans. Softw. Eng., vol. 18, no. 5, p. 423–433, May
1992.

[29] G. dos Santos, E. Figueiredo, A. Veloso, M. Viggiato, and N. Ziviani,
“Understanding machine learning software defect predictions,” Auto-
mated Software Engineering, vol. 27, pp. 369–392, 12 2020.

[30] J. Li, P. He, J. Zhu, and M. R. Lyu, “Software defect prediction via
convolutional neural network,” in 2017 IEEE International Conference
on Software Quality, Reliability and Security (QRS), July 2017, pp. 318–
328.

[31] S. Wang, T. Liu, J. Nam, and L. Tan, “Deep semantic feature learning for
software defect prediction,” IEEE Transactions on Software Engineering,
vol. 46, no. 12, pp. 1267–1293, Dec 2020.

[32] T. Fukushima, Y. Kamei, S. McIntosh, K. Yamashita, and N. Ubayashi,
“An empirical study of just-in-time defect prediction using cross-project
models,” in Proceedings of the 11th Working Conference on Mining
Software Repositories. ACM, 2014, p. 172–181.

[33] Y. Kamei, T. Fukushima, S. McIntosh, K. Yamashita, N. Ubayashi,
and A. E. Hassan, “Studying just-in-time defect prediction using cross-
project models,” Empirical Software Engineering, vol. 21, pp. 2072–
2106, 10 2016.

[34] P. Tourani and B. Adams, “The impact of human discussions on just-in-
time quality assurance: An empirical study on openstack and eclipse,” in
Proceedings of the 23rd International Conference on Software Analysis,
Evolution, and Reengineering, vol. 1, 2016, pp. 189–200.

[35] Z. Zeng, Y. Zhang, H. Zhang, and L. Zhang, “Deep just-in-time defect
prediction: how far are we?” in Proceedings of the 30th ACM SIGSOFT
International Symposium on Software Testing and Analysis. ACM,
2021, p. 427–438.

[36] J. Liu, Y. Zhou, Y. Yang, H. Lu, and B. Xu, “Code churn: a neglected
metric in effort-aware just-in-time defect prediction,” in Proceedings of
the 11th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement. IEEE Press, 2017, p. 11–19.

[37] M. Tan, L. Tan, S. Dara, and C. Mayeux, “Online defect prediction for
imbalanced data,” in Proceedings of the 37th International Conference
on Software Engineering - Volume 2, ser. ICSE ’15. IEEE Press, 2015,
p. 99–108.

[38] J. G. Barnett, C. K. Gathuru, L. S. Soldano, and S. McIntosh, “The
relationship between commit message detail and defect proneness in java
projects on github,” in Proceedings of the 13th International Conference

on Mining Software Repositories, ser. MSR ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 496–499.

[39] H. Tessema and S. Abebe, “Enhancing just-in-time defect prediction
using change request-based metrics,” in Proceedings of the 28th IEEE
International Conference on Software Analysis, Evolution and Reengi-
neering, 03 2021, pp. 511–515.

[40] Y. Tian, N. Li, J. Tian, and W. Zheng, “How well just-in-time defect
prediction techniques enhance software reliability?” in 2020 IEEE 20th
International Conference on Software Quality, Reliability and Security
(QRS), 2020, pp. 212–221.

[41] J. Eyolfson, L. Tan, and P. Lam, “Do time of day and developer
experience affect commit bugginess?” in Proceedings of the 8th Working
Conference on Mining Software Repositories. New York, NY, USA:
ACM, 2011, p. 153–162.

[42] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes induce
fixes?” ACM sigsoft software engineering notes, vol. 30, no. 4, pp. 1–5,
2005.

[43] M. Claes, M. V. Mäntylä, M. Kuutila, and B. Adams, “Do programmers
work at night or during the weekend?” in Proceedings of the 40th
International Conference on Software Engineering. ACM, 2018, p.
705–715.

[44] GitHub, “GitHub Archive Program,” https://archiveprogram.github.com/,
2024.

[45] T. K. Ho, “Random decision forests,” in Proceedings of 3rd international
conference on document analysis and recognition, vol. 1. IEEE, 1995,
pp. 278–282.

[46] C. Ying, M. Qi-Guang, L. Jia-Chen, and G. Lin, “Advance and prospects
of adaboost algorithm,” Acta Automatica Sinica, vol. 39, no. 6, pp. 745–
758, 2013.

[47] N. Fazakis, S. Karlos, S. Kotsiantis, and K. Sgarbas, “Self-trained lmt for
semisupervised learning,” Computational intelligence and neuroscience,
vol. 2016, no. 1, p. 3057481, 2016.

[48] T. Bayes, “Naive bayes classifier,” Article Sources and Contributors, pp.
1–9, 1968.

[49] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The weka data mining software: an update,” ACM SIGKDD
explorations newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[50] S. Gnanambal, M. Thangaraj, V. T. Meenatchi, and V. Gayathri, “Clas-
sification algorithms with attribute selection: An evaluation study using
weka,” International Journal of Advanced Networking and Applications,
vol. 9, pp. 3640–3644, 2018.

[51] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
synthetic minority over-sampling technique,” Journal of artificial intel-
ligence research, vol. 16, pp. 321–357, 2002.

[52] A. P. Bradley, “The use of the area under the roc curve in the evaluation
of machine learning algorithms,” Pattern recognition, vol. 30, no. 7, pp.
1145–1159, 1997.

[53] D. Montaigne, X. Marechal, T. Modine, A. Coisne, S. Mouton, G. Fayad,
S. Ninni, C. Klein, S. Ortmans, C. Seunes et al., “Daytime variation of
perioperative myocardial injury in cardiac surgery and its prevention by
rev-erbα antagonism: a single-centre propensity-matched cohort study
and a randomised study,” The Lancet, vol. 391, no. 10115, pp. 59–69,
2018.

[54] S.-S. Ren, L.-L. Xu, P. Wang, L. Li, Y.-T. Hu, M.-Q. Xu, M. Zhang,
L.-N. Yan, T.-F. Wen, B. Li et al., “Circadian rhythms have effects on
surgical outcomes of liver transplantation for patients with hepatocellular
carcinoma: a retrospective analysis of 147 cases in a single center,” in
Transplantation Proceedings, vol. 51, no. 6. Elsevier, 2019, pp. 1913–
1919.

[55] T. Fry, T. Dey, A. Karnauch, and A. Mockus, “A dataset and an approach
for identity resolution of 38 million author ids extracted from 2b git
commits,” in Proceedings of the 17th international conference on mining
software repositories, 2020, pp. 518–522.

[56] E. Guglielmi, A. D’Aguanno, R. Oliveto, and S. Scalabrino, “Repli-
cation package of ”enhancing just-in-time defect prediction models
with developer-centric features”,” https://doi.org/10.6084/m9.figshare.
27633297, 2024.

https://archiveprogram.github.com/
https://doi.org/10.6084/m9.figshare.27633297
https://doi.org/10.6084/m9.figshare.27633297

	Introduction
	Related Work
	JIT-SDP Model
	Features in JIT-SDP

	Defining and Mining Developer-Centric Features
	Developer-centric Features
	Temporal Aspects
	Change-related Features
	Project-related Features

	Mining Developer-Centric Features

	Empirical Study Design
	Study Context
	Experimental procedure

	Empirical Study Results
	RQ1: Within-Project Evaluation
	RQ2: Cross-Project Evaluation
	RQ3: Feature Importance

	Discussion and Implications
	Threats to Validity
	Conclusion and Future work 
	Data Availability
	References

